Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the p-biharmonic

被引:31
作者
Candito, P. [1 ]
Li, L. [2 ]
Livrea, R. [1 ]
机构
[1] Univ Reggio Calabria, Dipartimento MECMAT, I-89100 Reggio Di Calabria, Italy
[2] Sichuan Univ Sci & Engn, Dept Sci, Zigong 643000, Peoples R China
关键词
Infinitely many solutions; p-biharmonic type operators; Navier boundary value problem; Critical point theory; NONTRIVIAL SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.na.2012.07.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using critical point theory, we establish the existence of infinitely many weak solutions for a class of elliptic Navier boundary value problems depending on two parameters and involving the p-biharmonic operator. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6360 / 6369
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]   Infinitely many solutions for a fourth-order elastic beam equation [J].
Bonanno, Gabriele ;
Di Bella, Beatrice .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03) :357-368
[3]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[4]   MULTIPLE SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p BIHARMONIC OPERATOR [J].
Candito, Pasquale ;
Bisci, Giovanni Molica .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (04) :741-751
[5]  
Candito P, 2010, STUD U BABES-BOL MAT, V55, P41
[6]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578
[7]   Three solutions for a Navier boundary value problem involving the p-biharmonic [J].
Li, Chun ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1339-1347
[8]   Multiplicity results for a fourth-order semilinear elliptic problem [J].
Micheletti, AM ;
Pistoia, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (07) :895-908
[9]  
PELETIER LA, 1995, DIFF EQUAT+, V31, P301
[10]  
Quo H.M., 2009, J S CHINA NORMAL U N, V28, P18