On computing of positive integer powers for r-circulant matrices

被引:8
作者
Jiang, Zhaolin [1 ,2 ]
Xin, Hongxia [1 ,2 ]
Wang, Hongwei [1 ,2 ]
机构
[1] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[2] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
关键词
r-Circulant matrix; Powers; The Multinomial Theorem; ARBITRARY; PRECONDITIONERS; SYSTEMS;
D O I
10.1016/j.amc.2015.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a method of computing arbitrary positive integer powers for arbitrary order r-circulant matrices by using the basis expression of r-circulant matrices in matrix spaces and the Multinomial Theorem. (C) 2015 Published by Elsevier Inc.
引用
收藏
页码:409 / 413
页数:5
相关论文
共 21 条
[1]   Block {ω}-circulant preconditioners for the systems of differential equations [J].
Bertaccini, D ;
Ng, MK .
CALCOLO, 2003, 40 (02) :71-90
[2]   The Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix [J].
Boman, EC .
LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (02) :175-179
[3]  
Brudldi R. A., 2010, INTRO COMBINATORICS
[4]   A note on computing of positive integer powers for circulant matrices [J].
Feng, Jishe .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :472-475
[5]   Positive integer powers of complex symmetric circulant matrices [J].
Gutiérrez-Gutiérrez, Jesús .
Applied Mathematics and Computation, 2008, 202 (02) :877-881
[6]  
Jiang X. Y., 2014, ABSTR APPL ANAL
[7]  
Jiang Z L, 1995, J MATH PRACT THEORY, P52
[8]  
Jiang ZL., 1999, Circulant Matrices
[9]   Positive integer powers for one type of odd order circulant matrices [J].
Koken, Fikri ;
Bozkurt, Durmus .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4377-4381
[10]   A note on the fast algorithm for block Toeplitz systems with tensor structure [J].
Kou, KI ;
Sin, VK ;
Jin, XQ .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 126 (2-3) :187-197