Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources

被引:10
作者
Wang Xiao-yang [1 ]
Liu Li-Juan [1 ]
机构
[1] Chinese Acad Sci, Beijing Ctr Crystal Res & Dev, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
来源
CHINESE OPTICS | 2020年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
deep-UV nonlinear optical crystal; deep-UV laser; KBBF; crystal growth; PHASE-MATCHING CHARACTERISTICS; HYDROTHERMAL GROWTH; ULTRAVIOLET REGION; GENERATION; LASER; PULSES; NM;
D O I
10.3788/CO.2020-0028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
All-solid-state deep ultraviolet coherent light sources have important applications in frontier science, high technology and many other fields. An effective and feasible technical approach is to use commercially available visible and near-infrared all-solid-state lasers as the fundamental frequency light source to generate a deep ultraviolet laser through cascaded frequency conversion using nonlinear optical crystals. This paper reviews the research progress of deep ultraviolet nonlinear optical crystals and all-solid-state deep ultraviolet coherent light sources. Taking KBBF crystals as the representative example, their discovery, crystal growth, corresponding prism-coupled device technology, main optical properties, and ability to generate deep ultraviolet coherent light are each introduced. It was proven that KBBF crystals are excellent nonlinear optical crystals that can achieve deep ultraviolet laser output through direct frequency doubling. The applications of deep ultraviolet coherent light sources based on KBBF crystals and prism-coupled technology are discussed, with special focus given to ultra-high resolution photoelectron spectrometers. Finally, the future direction of the development of deep ultraviolet nonlinear optical crystals and all-solid-state deep ultraviolet laser technology are given.
引用
收藏
页码:427 / 441
页数:15
相关论文
共 57 条
[1]   OPTICAL MIXING [J].
BASS, M ;
HILL, AE ;
FRANKEN, PA ;
PETERS, CW ;
WEINREICH, G .
PHYSICAL REVIEW LETTERS, 1962, 8 (01) :18-&
[2]  
BATSANOVA LR, 1968, DOKL AKAD NAUK SSSR+, V178, P1317
[3]  
Bloembergen N., 1965, Nonlinear Optics
[4]   Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates [J].
Bok, Jin Mo ;
Bae, Jong Ju ;
Choi, Han-Yong ;
Varma, Chandra M. ;
Zhang, Wentao ;
He, Junfeng ;
Zhang, Yuxiao ;
Yu, Li ;
Zhou, X. J. .
SCIENCE ADVANCES, 2016, 2 (03)
[5]  
Chai Yan, 2011, Chinese Journal of Liquid Crystals and Displays, V26, P329, DOI 10.3788/YJYXS20112603.0329
[6]   Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications [J].
Chen, C. T. ;
Wang, G. L. ;
Wang, X. Y. ;
Xu, Z. Y. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (01) :9-25
[7]  
CHEN CH T, 2003, P 2003 INT WORKSH DI, P814
[8]  
Chen Chuang-tian, 1985, Chinese Physics Letters, V2, P389, DOI 10.1088/0256-307X/2/9/002
[9]   Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal [J].
Chen, Chuangtian ;
Wang, Guiling ;
Wang, Xiaoyang ;
Zhu, Yong ;
Xu, Zuyan ;
Kanai, Teruto ;
Watanabe, Shuntaro .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2008, 44 (7-8) :617-621
[10]   Deep UV nonlinear optical crystal: RbBe2(BO3)F2 [J].
Chen, Chuangtian ;
Luo, Siyang ;
Wang, Xiaoyang ;
Wang, Guiling ;
Wen, Xiaohong ;
Wu, Huaxing ;
Zhang, Xin ;
Xu, Zuyan .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (08) :1519-1525