Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors

被引:145
作者
Chen, Mingfeng [1 ]
Yu, Dan [1 ]
Zheng, Xiaozhong [1 ]
Dong, Xiaoping [1 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Chem, Xiasha Higher Educ Zone, 928 Second Ave, Hangzhou, Zhejiang, Peoples R China
关键词
Biomass; Carbon nanosheets; Hierarchical porosity; Heteroatom-doping; METAL-ORGANIC FRAMEWORK; NANOPOROUS CARBON; MESOPOROUS CARBON; GRAPHENE; NETWORK; ACTIVATION; TEMPLATE; STRATEGY; WASTES; FILM;
D O I
10.1016/j.est.2018.11.017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Biomass is regarded as sustainable and low-cost precursors of porous carbons for electrochemical energy storage and conversion due to their varied architecture and plentiful heteroatom containing. We herein developed a hierarchical N-doped porous carbon nanosheet material from soybean milk by employing simultaneous hard-template and KOH activation strategy. Hard-template of CaCO3 nanospheres, KOH activation and the melt template of potassium species respectively result in the formation of macropores, micropores and nanosheet-like morphology. Moreover, abundant nitrogen and oxygen elements in precursor bring a high heteroatom percentage in resultants, which don't contribute psuedocapacitance but also promote electron transfer and conductivity. The obtained carbons exhibit good charge storage capacity with a specific capacitance of 240.7 F g(-1) (1 A g(-1)) and the excellent retention of initial specific capacitance (92.2% to 20 A g(-1)) that is much higher than those of biomass-based porous carbons. A symmetric all-solid-state supercapacitor using KOH/PVA as electrolyte has a specific capacitance of 149.3 F g(-1) (0.5 A g(-1)), and good cycling stability with capacitance retention of 89.3% after 5000 cycles. The device displays energy density of 10.2 Wh kg(-1) at a power density of 351 W kg(-1) and retains 8.2 Wh kg(-1) even at a high power density of 19,600 W kg(-1 )with a wide voltage window of 1.4 V.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 59 条
  • [1] Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high performance on-chip micro-supercapacitors
    Aradilla, David
    Delaunay, Marc
    Sadki, Said
    Gerard, Jean-Michel
    Bidan, Gerard
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19254 - 19262
  • [2] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [3] Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes
    Cao, Chang-Yan
    Guo, Wei
    Cui, Zhi-Min
    Song, Wei-Guo
    Cai, Wei
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) : 3204 - 3209
  • [4] Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance
    Chang, Binbin
    Guo, Yanzhen
    Li, Yanchun
    Yin, Hang
    Zhang, Shouren
    Yang, Baocheng
    Dong, Xiaoping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9565 - 9577
  • [5] ZnCl2-activated porous carbon spheres with high surface area and superior mesoporous structure as an efficient supercapacitor electrode
    Chang, Binbin
    Wang, Yiliang
    Pei, Kemei
    Yang, Shengmao
    Dong, Xiaoping
    [J]. RSC ADVANCES, 2014, 4 (76) : 40546 - 40552
  • [6] Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors
    Chen, Chong
    Yu, Dengfeng
    Zhao, Gongyuan
    Du, Baosheng
    Tang, Wei
    Sun, Lei
    Sun, Ye
    Besenbacher, Flemming
    Yu, Miao
    [J]. NANO ENERGY, 2016, 27 : 377 - 389
  • [7] Oxygen-rich porous carbon sheets: Facile one-step synthesis and enhanced electrochemical performance
    Chen, Mingfeng
    Zheng, Xiaozhong
    Ma, Yushuang
    Dong, Xiaoping
    [J]. DIAMOND AND RELATED MATERIALS, 2018, 85 : 89 - 97
  • [8] N-doped mesoporous carbon by a hard-template strategy associated with chemical activation and its enhanced supercapacitance performance
    Chen, Mingfeng
    Xuan, Huaqing
    Zheng, Xiaozhong
    Liu, Jiyang
    Dong, Xiaoping
    Xi, Fengna
    [J]. ELECTROCHIMICA ACTA, 2017, 238 : 269 - 277
  • [9] Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode
    Cheng, Yongliang
    Huang, Liang
    Xiao, Xu
    Yao, Bin
    Yuan, Longyan
    Li, Tianqi
    Hu, Zhimi
    Wang, Bo
    Wan, Jun
    Zhou, Jun
    [J]. NANO ENERGY, 2015, 15 : 66 - 74
  • [10] Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors
    Choi, Bong Gill
    Hong, Jinkee
    Hong, Won Hi
    Hammond, Paula T.
    Park, HoSeok
    [J]. ACS NANO, 2011, 5 (09) : 7205 - 7213