Semi-supervised deep learning for hyperspectral image classification

被引:30
|
作者
Kang, Xudong [1 ]
Zhuo, Binbin [1 ]
Duan, Puhong [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/2150704X.2018.1557787
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recently, a series of deep learning methods based on the convolutional neural networks (CNNs) have been introduced for classification of hyperspectral images (HSIs). However, in order to obtain the optimal parameters, a large number of training samples are required in the CNNs to avoid the overfitting problem. In this paper, a novel method is proposed to extend the training set for deep learning based hyperspectral image classification. First, given a small-sample-size training set, the principal component analysis based edge-preserving features (PCA-EPFs) and extended morphological attribute profiles (EMAPs) are used for HSI classification so as to generate classification probability maps. Second, a large number of pseudo training samples are obtained by the designed decision function which depends on the classification probabilities. Finally, a deep feature fusion network (DFFN) is applied to classify HSI with the training set consists of the original small-sample-size training set and the added pseudo training samples. Experiments performed on several hyperspectral data sets demonstrate the state-of-the-art performance of the proposed method in terms of classification accuracies.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [11] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)
  • [12] Semi-supervised Hyperspectral Image Classification with Graphs
    Bandos, Tatyana V.
    Zhou, Dengyong
    Camps-Valls, Gustavo
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3883 - +
  • [13] Hyperspectral Image Classification with Imbalanced Data Based on Semi-Supervised Learning
    Zheng, Xiaorou
    Jia, Jianxin
    Chen, Jinsong
    Guo, Shanxin
    Sun, Luyi
    Zhou, Chan
    Wang, Yawei
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [14] Hyperspectral image classification using spectral histograms and semi-supervised learning
    Rivera, Sol M. Cruz
    Manian, Vidya
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966
  • [15] HYPERSPECTRAL IMAGE CLASSIFICATION USING SEMI-SUPERVISED LEARNING WITH LABEL PROPAGATION
    Patel, Usha
    Dave, Hardik
    Patel, Vibha
    2020 IEEE INDIA GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (INGARSS), 2020, : 205 - 208
  • [16] Semi-supervised hierarchical Transformer for hyperspectral Image classification
    He, Ziping
    Zhu, Qianglin
    Xia, Kewen
    Ghamisi, Pedram
    Zu, Baokai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (01) : 21 - 50
  • [17] Semi-Supervised Hyperspectral Image Classification with Multiscale Kernels
    Cui, Li
    Liu, Lu
    Chen, Di-Rong
    INTERNATIONAL CONFERENCE ON CIVIL, MECHANICAL AND MATERIAL ENGINEERING (ICCMME 2018), 2018, 1973
  • [18] Semi-Supervised Deep Learning Classification for Hyperspectral Image Based on Dual-Strategy Sample Selection
    Fang, Bei
    Li, Ying
    Zhang, Haokui
    Chan, Jonathan Cheung-Wai
    REMOTE SENSING, 2018, 10 (04)
  • [19] Semi-Supervised Learning via Convolutional Neural Network for Hyperspectral Image Classification
    Ling, Zhigang
    Li, Xiuxin
    Zou, Wen
    Guo, Siyu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1900 - 1905
  • [20] SEMI-SUPERVISED LEARNING WITH GRAPHS: COVARIANCE BASED SUPERPIXELS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Sellars, Philip
    Aviles-Rivero, Angelica I.
    Papadakis, Nicolas
    Coomes, David
    Faul, Anita
    Schonlieb, Carola-Bibiane
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 592 - 595