Multimodal medical image fusion using convolutional neural network and extreme learning machine

被引:9
|
作者
Kong, Weiwei [1 ,2 ,3 ]
Li, Chi [1 ,2 ,3 ]
Lei, Yang [4 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian, Peoples R China
[2] Shaanxi Key Lab Network Data Anal & Intelligent Pr, Xian, Peoples R China
[3] Xian Key Lab Big Data & Intelligent Comp, Xian, Peoples R China
[4] Engn Univ PAP, Coll Cryptog Engn, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
image fusion; modality; multimodal medical image; convolutional neural network; extreme learning machine; FILTER; ALGORITHM; MODEL;
D O I
10.3389/fnbot.2022.1050981
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of multimodal medical imaging technology greatly increases the accuracy of clinical diagnosis and etiological analysis. Nevertheless, each medical imaging modal unavoidably has its own limitations, so the fusion of multimodal medical images may become an effective solution. In this paper, a novel fusion method on the multimodal medical images exploiting convolutional neural network (CNN) and extreme learning machine (ELM) is proposed. As a typical representative in deep learning, CNN has been gaining more and more popularity in the field of image processing. However, CNN often suffers from several drawbacks, such as high computational costs and intensive human interventions. To this end, the model of convolutional extreme learning machine (CELM) is constructed by incorporating ELM into the traditional CNN model. CELM serves as an important tool to extract and capture the features of the source images from a variety of different angles. The final fused image can be obtained by integrating the significant features together. Experimental results indicate that, the proposed method is not only helpful to enhance the accuracy of the lesion detection and localization, but also superior to the current state-of-the-art ones in terms of both subjective visual performance and objective criteria.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] IMAGE FUSION USING CONVOLUTIONAL NEURAL NETWORK WITH BILATERAL FILTERING
    Mathiyalagan, P.
    Suvitha, N.
    2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [22] Multi-Modality Medical Image Fusion Using Convolutional Neural Network and Contrast Pyramid
    Wang, Kunpeng
    Zheng, Mingyao
    Wei, Hongyan
    Qi, Guanqiu
    Li, Yuanyuan
    SENSORS, 2020, 20 (08)
  • [23] An improved approach for medical image fusion using sparse representation and Siamese convolutional neural network
    Yousif, Ahmed Sabeeh
    Omar, Zaid
    Sheikh, Usman Ullah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
  • [24] Multimodal medical image fusion via laplacian pyramid and convolutional neural network reconstruction with local gradient energy strategy
    Fu, Jun
    Li, Weisheng
    Du, Jiao
    Xiao, Bin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126 (126)
  • [25] TWO-PHASE MULTIMODAL IMAGE FUSION USING CONVOLUTIONAL NEURAL NETWORKS
    Kusram, Kushal
    Transue, Shane
    Choi, Min-Hyung
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1874 - 1878
  • [26] Robust visual tracking based on convolutional neural network with extreme learning machine
    Sun, Rui
    Wang, Xu
    Yan, Xiaoxing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 7543 - 7562
  • [27] Robust visual tracking based on convolutional neural network with extreme learning machine
    Rui Sun
    Xu Wang
    Xiaoxing Yan
    Multimedia Tools and Applications, 2019, 78 : 7543 - 7562
  • [28] An effective classifier based on convolutional neural network and regularized extreme learning machine
    He, Chunmei
    Kang, Hongyu
    Yao, Tong
    Li, Xiaorui
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) : 8309 - 8321
  • [29] ConvELM: Exploiting Extreme Learning Machine on Convolutional Neural Network for Age Estimation
    Apuandi, Ismar
    Rachmawati, Ema
    Kosala, Gamma
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 407 - 412
  • [30] Facial Expressions Recognition through Convolutional Neural Network and Extreme Learning Machine
    Jammoussi, Imen
    Ben Nasr, Mounir
    Chtourou, Mohamed
    PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 162 - 166