Cylindrically symmetric relativistic fluids: a study based on structure scalars

被引:106
作者
Herrera, L. [1 ,2 ]
Di Prisco, A. [1 ,2 ]
Ospino, J. [3 ]
机构
[1] Univ Basque Country, Dept Fis Teor & Hist Ciencia, Caracas, Venezuela
[2] UCV, Caracas, Venezuela
[3] Univ Salamanca, Dept Matemat Aplicada, E-37008 Salamanca, Spain
关键词
Relativistic fluids; Cylindrically symmetric systems; Dissipative fluids; Causal dissipative theories; GRAVITATIONAL COLLAPSE; IRREVERSIBLE THERMODYNAMICS; GENERAL RELATIVITY; LEVI-CIVITA; WEYL TENSOR; DYNAMICS; NONSTATIONARY; COSMOLOGY; STABILITY; VORTICITY;
D O I
10.1007/s10714-012-1422-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Applying the 1 + 3 formalism we write down the full set of equations governing the structure and the evolution of self-gravitating cylindrically symmetric dissipative fluids with anisotropic stresses, in terms of scalar quantities obtained from the orthogonal splitting of the Riemann tensor (structure scalars), in the context of general relativity. These scalars which have been shown previously (in the spherically symmetric case) to be related to fundamental properties of the fluid distribution, such as: energy density, energy density inhomogeneity, local anisotropy of pressure, dissipative flux, active gravitational mass etc, are shown here to play also a very important role in the dynamics of cylindrically symmetric fluids. It is also shown that in the static case, all possible solutions to Einstein equations may be expressed explicitly through three of these scalars.
引用
收藏
页码:2645 / 2667
页数:23
相关论文
共 58 条
[1]   A consistent first-order model for relativistic heat flow [J].
Andersson, Nils ;
Lopez-Monsalvo, Cesar S. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (19)
[2]  
[Anonymous], 1971, P INT SCH PHYS ENR F
[3]   ROTATION HALTS CYLINDRICAL, RELATIVISTIC GRAVITATIONAL COLLAPSE [J].
APOSTOLATOS, TA ;
THORNE, KS .
PHYSICAL REVIEW D, 1992, 46 (06) :2435-2444
[4]  
Bel L., 1961, Ann. Inst. Henri Poincare, V17, P37
[5]   Shells embedded in flat space [J].
Bonnor, WB .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (05) :803-807
[6]  
CARTER B, 1976, JOURN REL
[7]  
CATTANEO C., 1948, ATTI SEMINAR MAT FIS, V3, P3
[9]   LEVI-CIVITA SPACETIMES IN MULTIDIMENSIONAL THEORIES [J].
De Leon, J. Ponce .
MODERN PHYSICS LETTERS A, 2009, 24 (21) :1659-1667
[10]   Shearfree cylindrical gravitational collapse [J].
Di Prisco, A. ;
Herrera, L. ;
MacCallum, M. A. H. ;
Santos, N. O. .
PHYSICAL REVIEW D, 2009, 80 (06)