Multiplexable high-temperature stable and low-loss intrinsic Fabry-Perot in-fiber sensors through nanograting engineering

被引:33
作者
Wang, Mohan [1 ]
Yang, Yang [1 ,2 ]
Huang, Sheng [1 ]
Wu, Jingyu [1 ]
Zhao, Kehao [1 ]
Li, Yuqi [1 ]
Peng, Zhaoqiang [1 ]
Zou, Ran [1 ]
Lan, Hui [1 ,3 ]
Ohodnicki, Paul R. [1 ]
Lu, Ping [4 ]
Buric, Michael P. [4 ]
Liu, Bo [5 ]
Yu, Qingxu [2 ]
Chen, Kevin P. [1 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[2] Dalian Univ Technol, Sch Optoelect Engn & Instrument Sci, Dalian 116081, Peoples R China
[3] Univ Jianghan, Sch Phys & Informat Engn, Wuhan 430056, Hubei, Peoples R China
[4] US DOE, Natl Energy Technol Lab, 626 Cochran Mill Ro, Pittsburgh, PA 15236 USA
[5] Leidos, 3610 Collins Ferry Rd, Morgantown, WV 26505 USA
关键词
FEMTOSECOND-LASER; FUSED-SILICA; INTERFEROMETER; MIRRORS;
D O I
10.1364/OE.395382
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a method of using femtosecond laser inscribed nanograting as low-loss- and high-temperature-stable in-fiber reflectors. By introducing a pair of nanograting inside the core of a single-mode optical fiber, an intrinsic Fabry-Perot interferometer can be created for high-temperature sensing applications. The morphology of the nanograting inscribed in fiber cores was engineered by tuning the fabrication conditions to achieve a high fringe visibility of 0.49 and low insertion loss of 0.002 dB per sensor. Using a white light interferometry demodulation algorithm, we demonstrate the temperature sensitivity, cross-talk, and spatial multiplexability of sensor arrays. Both the sensor performance and stability were studied from room temperature to 1000 degrees C with cyclic heating and cooling. Our results demonstrate a femtosecond direct laser writing technique capable of producing highly multiplexable in-fiber intrinsic Fabry-Perot interferometer sensor devices with high fringe contrast, high sensitivity, and low-loss for application in harsh environmental conditions. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20225 / 20235
页数:11
相关论文
共 48 条
[1]   Ultrafast laser direct writing and nanostructuring in transparent materials [J].
Beresna, Martynas ;
Gecevicius, Mindaugas ;
Kazansky, Peter G. .
ADVANCES IN OPTICS AND PHOTONICS, 2014, 6 (03) :293-339
[2]   Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass [J].
Bricchi, E ;
Kazansky, PG .
APPLIED PHYSICS LETTERS, 2006, 88 (11)
[3]  
Calderoni P., 2019, 2019 IEEE INT INSTR, P1
[4]   Direct volume variation measurements in fused silica specimens exposed to femtosecond laser [J].
Champion, Audrey ;
Bellouard, Yves .
OPTICAL MATERIALS EXPRESS, 2012, 2 (06) :789-798
[5]   Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing [J].
Chen, Pengcheng ;
Shu, Xuewen .
OPTICS EXPRESS, 2018, 26 (05) :5292-5299
[6]   Regenerated distributed Bragg reflector fiber lasers for high-temperature operation [J].
Chen, Rongzhang ;
Yan, Aidong ;
Li, Mingshan ;
Chen, Tong ;
Wang, Qingqing ;
Canning, John ;
Cook, Kevin ;
Chen, Kevin P. .
OPTICS LETTERS, 2013, 38 (14) :2490-2492
[7]   Ultraweak intrinsic Fabry-Perot cavity array for distributed sensing [J].
Chen, Zhen ;
Yuan, Lei ;
Hefferman, Gerald ;
Wei, Tao .
OPTICS LETTERS, 2015, 40 (03) :320-323
[8]   Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer [J].
Choi, Hae Young ;
Park, Kwan Seoh ;
Park, Seong Jun ;
Paek, Un-Chul ;
Lee, Byeong Ha ;
Choi, Eun Seo .
OPTICS LETTERS, 2008, 33 (21) :2455-2457
[9]   Parallel structured optical fiber in-line Fabry-Perot interferometers for high temperature sensing [J].
Cui, X. L. ;
Zhang, Hua ;
Wang, D. N. .
OPTICS LETTERS, 2020, 45 (03) :726-729
[10]   Femtosecond Laser Inscribed Multiple In-Fiber Reflection Mirrors for High-Temperature Sensing [J].
Deng, Jun ;
Wang, D. N. ;
Zhang, Hua .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (21) :5537-5541