Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq

被引:42
|
作者
Min, Jae-Woong [1 ,2 ]
Kim, Woo Jin [3 ]
Han, Jeong A. [3 ]
Jung, Yu-Jin [4 ]
Kim, Kyu-Tae [5 ]
Park, Woong-Yang [5 ,6 ]
Lee, Hae-Ock [5 ,6 ]
Choi, Sun Shim [1 ,2 ]
机构
[1] Kangwon Natl Univ, Coll Biomed Sci, Dept Med Biotechnol, Chunchon 200701, South Korea
[2] Kangwon Natl Univ, Inst Biosci & Biotechnol, Chunchon 200701, South Korea
[3] Kangwon Natl Univ, Sch Med, Chunchon 200701, South Korea
[4] Kangwon Natl Univ, Dept Biol Sci, Chunchon 200701, South Korea
[5] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Samsung Genome Inst, Seoul, South Korea
[6] Sungkyunkwan Univ, Dept Mol Cell Biol, Seoul, South Korea
来源
PLOS ONE | 2015年 / 10卷 / 08期
基金
新加坡国家研究基金会;
关键词
INTRATUMOR HETEROGENEITY; GENETIC-HETEROGENEITY; SUPPRESSOR GENE; CANCER; CYCLE; EXPRESSION; EVOLUTION; MOUSE; MODEL; REGRESSION;
D O I
10.1371/journal.pone.0135817
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Single-cell RNA-Seq unveils tumor microenvironment
    Lee, Hae-Ock
    Park, Woong-Yang
    BMB REPORTS, 2017, 50 (06) : 283 - 284
  • [2] Single-Cell RNA-Seq in Human Lung Cancer
    Kim, J.
    Xu, Z.
    Marignani, P.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S911 - S911
  • [3] By integrating single-cell RNA-seq and bulk RNA-seq in sphingolipid metabolism, CACYBP was identified as a potential therapeutic target in lung adenocarcinoma
    Zhang, Pengpeng
    Pei, Shengbin
    Gong, Zeitian
    Feng, Yanlong
    Zhang, Xiao
    Yang, Fang
    Wang, Wei
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [4] Profiling of Tumor Immune Cells by Single-cell RNA-seq
    Montel, V.
    Yao, J.
    So, A.
    Watson, L.
    Tsai, J. H.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (06): : 1029 - 1030
  • [5] Identification of the mesenchymal subpopulation responsible for lung tumorigenesis by using single-cell RNA-seq
    Yanagi, Shigehisa
    Tsubouchi, Hironobu
    Miyazaki, Taiga
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [6] Identification of distinct tumor cell patterns with single-cell RNA sequencing integrating primary lung adenocarcinoma and brain metastasis tumor
    Wang, Xi
    Zhang, Dainan
    Guan, Xiudong
    Ma, Shunchang
    Zhou, Wenjianlong
    Peng, Jiayi
    Yuan, Linhao
    Wang, Yangyang
    Jin, Shucheng
    Xu, Qin
    Li, Deling
    Wu, Shengtian
    Jia, Guijun
    Zhang, Chuanbao
    Jia, Wang
    TRANSLATIONAL LUNG CANCER RESEARCH, 2023, 12 (03) : 547 - +
  • [7] Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma
    Philip Bischoff
    Alexandra Trinks
    Benedikt Obermayer
    Jan Patrick Pett
    Jennifer Wiederspahn
    Florian Uhlitz
    Xizi Liang
    Annika Lehmann
    Philipp Jurmeister
    Aron Elsner
    Tomasz Dziodzio
    Jens-Carsten Rückert
    Jens Neudecker
    Christine Falk
    Dieter Beule
    Christine Sers
    Markus Morkel
    David Horst
    Nils Blüthgen
    Frederick Klauschen
    Oncogene, 2021, 40 : 6748 - 6758
  • [8] Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma
    Bischoff, Philip
    Trinks, Alexandra
    Obermayer, Benedikt
    Pett, Jan Patrick
    Wiederspahn, Jennifer
    Uhlitz, Florian
    Liang, Xizi
    Lehmann, Annika
    Jurmeister, Philipp
    Elsner, Aron
    Dziodzio, Tomasz
    Rueckert, Jens-Carsten
    Neudecker, Jens
    Falk, Christine
    Beule, Dieter
    Sers, Christine
    Morkel, Markus
    Horst, David
    Bluethgen, Nils
    Klauschen, Frederick
    ONCOGENE, 2021, 40 (50) : 6748 - 6758
  • [9] Integrated analysis of bulk and single-cell RNA-seq reveals the role of MYC signaling in lung adenocarcinoma
    Hao, Lu
    Chen, Qiuyan
    Chen, Xi
    Zhou, Qing
    FRONTIERS IN GENETICS, 2022, 13
  • [10] Tumor genetic analysis from single-cell RNA-seq data
    Nawy, Tal
    NATURE METHODS, 2018, 15 (07) : 571 - 571