Functional alignment with anatomical networks is associated with cognitive flexibility

被引:142
作者
Medaglia, John D. [1 ,2 ]
Huang, Weiyu [3 ]
Karuza, Elisabeth A. [4 ]
Kelkar, Apoorva [1 ]
Thompson-Schill, Sharon L. [4 ]
Ribeiro, Alejandro [3 ]
Bassett, Danielle S. [3 ,5 ]
机构
[1] Drexel Univ, Dept Psychol, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Psychol, 3815 Walnut St, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
RESTING-STATE; DYNAMIC RECONFIGURATION; ANTERIOR CINGULATE; HUMAN CONNECTOME; CEREBRAL-CORTEX; BRAIN NETWORKS; CONNECTIVITY; MECHANISMS; IMPAIRMENT; ACCURATE;
D O I
10.1038/s41562-017-0260-9
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Cognitive flexibility describes the human ability to switch between modes of mental function to achieve goals. Mental switching is accompanied by transient changes in brain activity, which must occur atop an anatomical architecture that bridges disparate cortical and subcortical regions via underlying white matter tracts. However, an integrated understanding of how white matter networks might constrain brain dynamics during cognitive processes requiring flexibility has remained elusive. Here, to address this challenge, we applied emerging tools from graph signal processing to examine whether blood oxygen level-dependent signals measured at each point in time correspond to complex underlying anatomical networks in 28 individuals performing a perceptual task that probed cognitive flexibility. We found that the alignment between functional signals and the architecture of the underlying white matter network was associated with greater cognitive flexibility across subjects. By computing a concise measure using multi-modal neuroimaging data, we uncovered an integrated structure-function relation of human behaviour.
引用
收藏
页码:156 / 164
页数:9
相关论文
共 77 条
[1]   Modeling the Impact of Lesions in the Human Brain [J].
Alstott, Jeffrey ;
Breakspear, Michael ;
Hagmann, Patric ;
Cammoun, Leila ;
Sporns, Olaf .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
[2]  
[Anonymous], 1997, AM MATH SOC, DOI DOI 10.1090/CBMS/092
[3]   Task switching capacities in persons with Alzheimer's disease and mild cognitive impairment [J].
Belleville, Sylvie ;
Bherer, Louis ;
Lepage, Emilie ;
Chertkow, Howard ;
Gauthier, Serge .
NEUROPSYCHOLOGIA, 2008, 46 (08) :2225-2233
[4]   Optimally controlling the human connectome: the role of network topology [J].
Betzel, Richard F. ;
Gu, Shi ;
Medaglia, John D. ;
Pasqualetti, Fabio ;
Bassett, Danielle S. .
SCIENTIFIC REPORTS, 2016, 6
[5]   Motivation and Cognitive Control: From Behavior to Neural Mechanism [J].
Botvinick, Matthew ;
Braver, Todd .
ANNUAL REVIEW OF PSYCHOLOGY, VOL 66, 2015, 66 :83-113
[6]   Dynamic reconfiguration of frontal brain networks during executive cognition in humans [J].
Braun, Urs ;
Schaefer, Axel ;
Walter, Henrik ;
Erk, Susanne ;
Romanczuk-Seiferth, Nina ;
Haddad, Leila ;
Schweiger, Janina I. ;
Grimm, Oliver ;
Heinz, Andreas ;
Tost, Heike ;
Meyer-Lindenberg, Andreas ;
Bassett, Danielle S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (37) :11678-11683
[7]   The variable nature of cognitive control: a dual mechanisms framework [J].
Braver, Todd S. .
TRENDS IN COGNITIVE SCIENCES, 2012, 16 (02) :106-113
[8]   Mapping the human connectome at multiple scales with diffusion spectrum MRI [J].
Cammoun, Leila ;
Gigandet, Xavier ;
Meskaldji, Djalel ;
Thiran, Jean Philippe ;
Sporns, Olaf ;
Do, Kim Q. ;
Maeder, Philippe ;
Meuli, Reto ;
Hagmann, Patric .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 203 (02) :386-397
[9]   Early development of subcortical regions involved in non-cued attention switching [J].
Casey, BJ ;
Davidson, MC ;
Hara, Y ;
Thomas, KM ;
Martinez, A ;
Galvan, A ;
Halperin, JM ;
Rodríguez-Aranda, CE ;
Tottenham, N .
DEVELOPMENTAL SCIENCE, 2004, 7 (05) :534-542
[10]   Local termination pattern analysis: a tool for comparing white matter morphology [J].
Cieslak, M. ;
Grafton, S. T. .
BRAIN IMAGING AND BEHAVIOR, 2014, 8 (02) :292-299