Inorganic material passivation of defects toward efficient perovskite solar cells

被引:51
作者
Qi, Wenjing [1 ,2 ]
Zhou, Xin [1 ,2 ]
Li, Jiale [1 ,2 ]
Cheng, Jian [1 ,2 ]
Li, Yuelong [1 ,2 ]
Ko, Min Jae [3 ]
Zhao, Ying [1 ,2 ]
Zhang, Xiaodan [1 ,2 ]
机构
[1] Nankai Univ, Key Lab Photoelect Thin Film Devices & Technol Ti, Inst Photoelect Thin Film Devices & Technol, Solar Energy Res Ctr, Tianjin 300350, Peoples R China
[2] Nankai Univ, Renewable Energy Convers & Storage Ctr, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
[3] Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea
基金
国家重点研发计划;
关键词
Perovskite solar cells; Inorganic materials passivation; Defect healing; Stability; STABILITY; PERFORMANCE; NANOPARTICLES; HYSTERESIS; GROWTH;
D O I
10.1016/j.scib.2020.07.017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells (PSCs). However, the secondary bonding formed between organic molecules and perovskite layers is still not strong enough to protect the perovskite absorber from degradation initialized by oxygen and water attacking at defects. Recently, passivation with inorganic materials has gradually been favored by researchers due to the effectiveness of chemical and mechanical passivation. Lead-containing substances, alkali metal halides, transition elements, oxides, hydrophobic substances, etc. have already been applied to the surface and interfacial passivation of PSCs. These inorganic substances mainly manipulate the nucleation and crystallization process of perovskite absorbers by chemically passivating defects along grain boundaries and surface or forming a mechanically protective layer simultaneously to prevent the penetration of moisture and oxygen, thereby improving the stability and efficiency of the PSCs. Herein, we mainly summarize inorganic passivating materials and their individual passivation principles and methods. Finally, this review offers a personal perspective for future research trends in the development of passivation strategies through inorganic materials. (C) 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:2022 / 2032
页数:11
相关论文
共 61 条
[41]   High-Performance Perovskite Solar Cells with Large Grain-Size obtained by using the Lewis Acid-Base Adduct of Thiourea [J].
Wang, Shuo ;
Ma, Zirui ;
Liu, Beibei ;
Wu, Wenchao ;
Zhu, Yu ;
Ma, Ruixin ;
Wang, Chengyan .
SOLAR RRL, 2018, 2 (06)
[42]   Lewis acid/base approach for efficacious defect passivation in perovskite solar cells [J].
Wang, Shurong ;
Wang, Aili ;
Deng, Xiaoyu ;
Xie, Lisha ;
Xiao, Andong ;
Li, Chengbo ;
Xiang, Yong ;
Li, Tingshuai ;
Ding, Liming ;
Hao, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (25) :12201-12225
[43]   Stabilizing heterostructures of soft perovskite semiconductors [J].
Wang, Yanbo ;
Wu, Tianhao ;
Barbaud, Julien ;
Kong, Weiyu ;
Cui, Danyu ;
Chen, Han ;
Yang, Xudong ;
Han, Liyuan .
SCIENCE, 2019, 365 (6454) :687-+
[44]   Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells [J].
Wu, Wu-Qiang ;
Rudd, Peter N. ;
Ni, Zhenyi ;
Van Brackle, Charles Henry ;
Wei, Haotong ;
Wang, Qi ;
Ecker, Benjamin R. ;
Gao, Yongli ;
Huang, Jinsong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (08) :3989-3996
[45]   Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells [J].
Wu, Wu-Qiang ;
Yang, Zhibin ;
Rudd, Peter N. ;
Shao, Yuchuan ;
Dai, Xuezeng ;
Wei, Haotong ;
Zhao, Jingjing ;
Fang, Yanjun ;
Wang, Qi ;
Liu, Ye ;
Deng, Yehao ;
Xiao, Xun ;
Feng, Yuanxiang ;
Huang, Jinsong .
SCIENCE ADVANCES, 2019, 5 (03)
[46]   Stabilizing the MAPbI 3 perovksite via the in -situ formed lead sulfide layer for efficient and robust solar cells [J].
Xie, Lujia ;
Zhang, Taiyang ;
Zhao, Yixin .
JOURNAL OF ENERGY CHEMISTRY, 2020, 47 :62-65
[47]   Defects Healing in Two-Step Deposited Perovskite Solar Cells via Formamidinium Iodide Compensation [J].
Xin, Chenguang ;
Zhang, Jiangbin ;
Zhou, Xin ;
Ma, Linchuan ;
Hou, Fuhua ;
Shi, Biao ;
Pan, San-Jiang ;
Chen, Bingbing ;
Wang, Pengyang ;
Zhang, Dekun ;
Chen, Xinliang ;
Zhao, Ying ;
Bakulin, Artem ;
Li, Yuelong ;
Zhang, Xiaodan .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) :3318-3327
[48]   Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems [J].
Xu, Jixian ;
Boyd, Caleb C. ;
Yu, Zhengshan J. ;
Palmstrom, Axel F. ;
Witter, Daniel J. ;
Larson, Bryon W. ;
France, Ryan M. ;
Werner, Jeremie ;
Harvey, Steven P. ;
Wolf, Eli J. ;
Weigand, William ;
Manzoor, Salman ;
van Hest, Maikel F. A. M. ;
Berry, Joseph J. ;
Luther, Joseph M. ;
Holman, Zachary C. ;
McGehee, Michael D. .
SCIENCE, 2020, 367 (6482) :1097-+
[49]   Large-area perovskite solar cells [J].
Yang, Junliang ;
Zuo, Chuantian ;
Peng, Yong ;
Yang, Yang ;
Yang, Xudong ;
Ding, Liming .
SCIENCE BULLETIN, 2020, 65 (11) :872-875
[50]   Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening [J].
Yang, Mengjin ;
Zhang, Taiyang ;
Schulz, Philip ;
Li, Zhen ;
Li, Ge ;
Kim, Dong Hoe ;
Guo, Nanjie ;
Berry, Joseph J. ;
Zhu, Kai ;
Zhao, Yixin .
NATURE COMMUNICATIONS, 2016, 7