Periodic solutions of second order differential equations in Banach spaces

被引:44
作者
Keyantuo, V
Lizama, C
机构
[1] Univ Puerto Rico, Fac Nat Sci, Dept Math, San Juan, PR 00931 USA
[2] Univ Santiago Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
D O I
10.1007/s00209-005-0919-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use operator-valued Fourier multiplier theorems to study second order differential equations in Banach spaces. We establish maximal regularity results in L-p and C-s for strong solutions of a complete second order equation. In the second part, we study mild solutions for the second order problem. Two types of mild solutions are considered. When the operator A involved is the generator of a strongly continuous cosine function, we give characterizations in terms of Fourier multipliers and spectral properties of the cosine function. The results obtained are applied to elliptic partial differential operators.
引用
收藏
页码:489 / 514
页数:26
相关论文
共 40 条
[1]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[2]  
Amann H, 1997, MATH NACHR, V186, P5
[3]  
Amann H., 1995, MONOGRAPHS MATH, V89
[4]  
[Anonymous], 2011, 2 ORDER LINEAR DIFFE
[5]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[6]  
[Anonymous], 2003, MEMOIRS AM MATH SOC
[7]  
[Anonymous], 1983, SEMIGROUPS OPERATORS
[8]   Fourier multipliers for Holder continuous functions and maximal regularity [J].
Arendt, W ;
Batty, C ;
Bu, SQ .
STUDIA MATHEMATICA, 2004, 160 (01) :23-51
[9]   Operator-valued Fourier multipliers on periodic Besov spaces and applications [J].
Arendt, W ;
Bu, SQ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :15-33
[10]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343