An Improved Spectral Conjugate Gradient Algorithm for Nonconvex Unconstrained Optimization Problems

被引:35
作者
Deng, Songhai [1 ]
Wan, Zhong [1 ]
Chen, Xiaohong [2 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Cent S Univ, Sch Business, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Unconstrained optimization; Spectral conjugate gradient method; Global convergence; Inexact line search; Descent algorithm; GLOBAL CONVERGENCE; DESCENT;
D O I
10.1007/s10957-012-0239-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, an improved spectral conjugate gradient algorithm is developed for solving nonconvex unconstrained optimization problems. Different from the existent methods, the spectral and conjugate parameters are chosen such that the obtained search direction is always sufficiently descent as well as being close to the quasi-Newton direction. With these suitable choices, the additional assumption in the method proposed by Andrei on the boundedness of the spectral parameter is removed. Under some mild conditions, global convergence is established. Numerical experiments are employed to demonstrate the efficiency of the algorithm for solving large-scale benchmark test problems, particularly in comparison with the existent state-of-the-art algorithms available in the literature.
引用
收藏
页码:820 / 842
页数:23
相关论文
共 24 条
[1]  
Andrei N., 2008, Adv. Model. Optim, V10, P147
[2]  
Andrei N, 2007, COMPUT OPTIM APPL, V38, P401, DOI [10.1007/s10589-007-9055-7, 10.1007/S10589-007-9055-7]
[3]  
Andrei N, 2011, B MALAYS MATH SCI SO, V34, P319
[4]   New accelerated conjugate gradient algorithms as a modification of Dai-Yuan's computational scheme for unconstrained optimization [J].
Andrei, Neculai .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (12) :3397-3410
[5]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[6]   New conjugacy conditions and related nonlinear conjugate gradient methods [J].
Dai, YH ;
Liao, LZ .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (01) :87-101
[7]   Global convergence of a modified spectral FR conjugate gradient method [J].
Du, Shou-qiang ;
Chen, Yuan-yuan .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :766-770
[8]   GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION [J].
Gilbert, Jean Charles ;
Nocedal, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :21-42
[9]  
Hager W.W., 2006, Pac. J. Optim., V2, P35
[10]   Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent [J].
Hager, WW ;
Zhang, HC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (01) :113-137