A lower bound for the harmonic index of a graph with minimum degree at least two

被引:61
作者
Wu, Renfang [1 ]
Tang, Zikai [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Minist Educ China, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
关键词
Graph; the harmonic index; the minimum degree;
D O I
10.2298/FIL1301051W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index H(G) of a graph G is defined as the sum of the weights 2/ d(u)+ d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. We give a best possible lower bound for the harmonic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterize the extremal graphs.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 11 条
  • [1] Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system
    Caporossi, G
    Hansen, P
    [J]. DISCRETE MATHEMATICS, 2000, 212 (1-2) : 29 - 44
  • [2] Deng H., PREPRINT
  • [3] Fajtlowicz S., 1987, Congr. Numerantium, V60, P187, DOI DOI 10.4236/APM.2014.45021
  • [4] SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.)
    FAVARON, O
    MAHEO, M
    SACLE, JF
    [J]. DISCRETE MATHEMATICS, 1993, 111 (1-3) : 197 - 220
  • [5] Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number
    Hansen, Pierre
    Vukicevic, Damir
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4228 - 4234
  • [6] Ilic A., 2012, ARXIV 1204 3313
  • [7] Liu BL, 2009, MATCH-COMMUN MATH CO, V62, P143
  • [8] ON THE SUM-CONNECTIVITY INDEX
    Wang, Shilin
    Zhou, Bo
    Trinajstic, Nenad
    [J]. FILOMAT, 2011, 25 (03) : 29 - 42
  • [9] XU X., 2012, Appl. Math. Sci, V6, P2013
  • [10] On a conjecture of the Randic index
    You, Zhifu
    Liu, Bolian
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1766 - 1772