A lower bound for the harmonic index of a graph with minimum degree at least two

被引:62
作者
Wu, Renfang [1 ]
Tang, Zikai [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Minist Educ China, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
关键词
Graph; the harmonic index; the minimum degree;
D O I
10.2298/FIL1301051W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index H(G) of a graph G is defined as the sum of the weights 2/ d(u)+ d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. We give a best possible lower bound for the harmonic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterize the extremal graphs.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 11 条
[1]   Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system [J].
Caporossi, G ;
Hansen, P .
DISCRETE MATHEMATICS, 2000, 212 (1-2) :29-44
[2]  
Deng H., PREPRINT
[3]  
Fajtlowicz S., 1987, Congr. Numerantium, V60, P187, DOI DOI 10.4236/APM.2014.45021
[4]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[5]   Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number [J].
Hansen, Pierre ;
Vukicevic, Damir .
DISCRETE MATHEMATICS, 2009, 309 (13) :4228-4234
[6]  
Ilic A., 2012, ARXIV 1204 3313
[7]  
Liu BL, 2009, MATCH-COMMUN MATH CO, V62, P143
[8]   ON THE SUM-CONNECTIVITY INDEX [J].
Wang, Shilin ;
Zhou, Bo ;
Trinajstic, Nenad .
FILOMAT, 2011, 25 (03) :29-42
[9]  
XU X., 2012, Appl. Math. Sci, V6, P2013
[10]   On a conjecture of the Randic index [J].
You, Zhifu ;
Liu, Bolian .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) :1766-1772