The algebra of quasi-symmetric functions is free over the integers

被引:42
作者
Hazewinkel, M [1 ]
机构
[1] CWI, NL-1009 AB Amsterdam, Netherlands
关键词
Leibniz-Hopf algebra; quasi-symmetric functions; Ditters conjecture; Lie-Hopf algebra; Solomon descent algebra; shuffle algebra; overlapping shuffle algebra; noncommutative symmetric functions; divided power sequences; coalgebra; Hopf algebra; free coalgebra; formal group; Lyndon words; symmetric group; symmetric functions; Hecke algebra;
D O I
10.1006/aima.2001.2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L denote the Leibniz-Hopf algebra, which also turns up as the Solomon descent algebra and the algebra of noncommutative symmetric functions. As an algebra L = Z<Z(1), Z(2), ...>, the free associative algebra over the integers in countably many indeterminates. The coalgebra structure is given by mu(Z(n)) = Sigma(i=0)(n) Z(i) circle times Z(n-i), Z(0) = 1. Let M be the graded dual of L. This is the algebra of quasi-symmetric functions. The Ditters conjecture says that this algebra is a free commutative algebra over the integers. In this paper the Ditters conjecture is proved. (C) 2001 Elsevier Science.
引用
收藏
页码:283 / 300
页数:18
相关论文
共 14 条
[1]   FREE DIFFERENTIAL CALCULUS .4. THE QUOTIENT GROUPS OF THE LOWER CENTRAL SERIES [J].
CHEN, KT ;
FOX, RH ;
LYNDON, RC .
ANNALS OF MATHEMATICS, 1958, 68 (01) :81-95
[2]   CURVES AND FORMAL (CO) GROUPS [J].
DITTERS, EJ .
INVENTIONES MATHEMATICAE, 1972, 17 (01) :1-&
[3]   Free polynomial generators for the Hopf algebra QSym of quasisymmetric functions [J].
Ditters, EJ ;
Scholtens, ACJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 144 (03) :213-227
[4]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[5]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[6]   COUNTING PERMUTATIONS WITH GIVEN CYCLE STRUCTURE AND DESCENT SET [J].
GESSEL, IM ;
REUTENAUER, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 64 (02) :189-215
[7]  
Hazewinkel M, 2000, FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, P30
[8]   Noncommutative symmetric functions IV: Quantum linear groups and hecke algebras at q = 0 [J].
Krob, D ;
Thibon, JY .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (04) :339-376
[9]  
Stanley Richard P., 1984, EUROP J COMBINATORIC, V5, P359
[10]   Quantum quasi-symmetric functions and Hecke algebras [J].
Thibon, JY ;
Ung, BCV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22) :7337-7348