On some asymptotic representations of solutions to elliptic equations and their applications

被引:3
作者
Pyatkov, S. G. [1 ,2 ]
Neustroeva, L., V [2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Yugra State Univ, Khanty Mansiisk, Russia
基金
俄罗斯基础研究基金会;
关键词
Helmholtz equation; boundary value problems; Green's function; asymptotics; inverse problem;
D O I
10.1080/17476933.2020.1801656
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The question on asymptotic representations of Green's function for classical boundary value problems for second-order elliptic equations depending on a complex parameter is considered. The equations are defined either in a domain with a compact boundary or in the whole space or the half-space. The main asymptotic term is written out. The results can be applied for the study of some inverse problems of recovering point sources in heat and mass transfer problems.
引用
收藏
页码:964 / 987
页数:24
相关论文
共 28 条
[1]  
Amann H, 2005, TEN MATHEMATICAL ESSAYS ON APPROXIMATION IN ANALYSIS AND TOPOLOGY, P1, DOI 10.1016/B978-044451861-3/50001-X
[2]  
Amann H., 2005, Journal Math. Sci., V130, P4780
[3]  
Amann H., 1993, Function Spaces, Differential Operators and Nonlinear Analysis, P9
[4]  
Babich V. M., 1964, Mat. Sb, V65, P576
[5]  
Babich V.M., 1972, ASYMPTOTIC METHODS D
[6]  
Babich VM., 2018, ELASTIC WAVES HIGH F
[7]  
Babich VM., 1988, ITOGI NAUKI TE SPMFN, V34
[8]  
Babich VM., 1965, USSR COMP MATH MATH, V5, DOI [10.1016/0041-5553(65)90021-2, DOI 10.1016/0041-5553(65)90021-2]
[9]  
Buslaev V.S., 1974, J SOV MATH, V2, P204, DOI DOI 10.1007/BF01099678
[10]  
Courant R., 1962, Methods of Mathematical Physics II