Exact computation of the hypergraph Turan function for expanded complete 2-graphs

被引:33
作者
Pikhurko, Oleg [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
k-uniform hypergraph; Stability property; Turan density; Turan function; REGULARITY LEMMA; TRIPLE-SYSTEMS; NUMBER; GRAPHS;
D O I
10.1016/j.jctb.2012.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I > k >= 3. Let the k-graph H-l((k)) be obtained from the complete 2-graph K-l((2)) by enlarging each edge with a new set of k - 2 vertices. Mubayi [A hypergraph extension of Turan's theorem, J. Combin. Theory Ser. B 96 (2006) 122-134] computed asymptotically the Turan function ex(n, H-l((k))). Here we determine the exact value of ex(n, H-l((k))) for all sufficiently large n, settling a conjecture of Mubayi. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 21 条
[1]   The Turan density of triple systems is not principal [J].
Balogh, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) :176-180
[2]  
Bollobas B., 1974, Discrete Mathematics, V8, P21, DOI 10.1016/0012-365X(74)90105-8
[3]   SUPERSATURATED GRAPHS AND HYPERGRAPHS [J].
ERDOS, P ;
SIMONOVITS, M .
COMBINATORICA, 1983, 3 (02) :181-192
[4]   ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) :183-&
[5]   ASYMPTOTIC SOLUTION OF A TURAN-TYPE PROBLEM [J].
FRANKL, P .
GRAPHS AND COMBINATORICS, 1990, 6 (03) :223-227
[6]   A NEW GENERALIZATION OF THE ERDOS-KO-RADO THEOREM [J].
FRANKL, P ;
FUREDI, Z .
COMBINATORICA, 1983, 3 (3-4) :341-349
[7]   Triple systems not containing a fano configuration [J].
Füredi, Z ;
Simonovits, M .
COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (04) :467-484
[8]   Hypergraph regularity and the multidimensional Szemeredi theorem [J].
Gowers, W. T. .
ANNALS OF MATHEMATICS, 2007, 166 (03) :897-946
[9]  
Katona Gyula, 1964, Mat. Fiz. Lapok, V15, P228
[10]   On a hypergraph Turan problem of Frankl [J].
Keevash, P ;
Sudakov, B .
COMBINATORICA, 2005, 25 (06) :673-706