High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity

被引:99
作者
Mattioli, Kaia [1 ,2 ]
Volders, Pieter-Jan [1 ,3 ,4 ]
Gerhardinger, Chiara [1 ,5 ]
Lee, James C. [1 ,6 ]
Maass, Philipp G. [1 ,7 ,8 ]
Mele, Marta [1 ,5 ,9 ]
Rinn, John L. [1 ,5 ,10 ,11 ]
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] Harvard Med Sch, Dept Biol & Biomed Sci, Boston, MA 02115 USA
[3] Univ Ghent, Dept Biomol Med, B-9000 Ghent, Belgium
[4] VIB, VIB UGent Ctr Med Biotechnol, B-9000 Ghent, Belgium
[5] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[6] Univ Cambridge, Dept Med, Sch Clin Med, Addenbrookes Hosp, Cambridge CB2 0QQ, England
[7] Sickkids Res Inst, Genet & Genome Biol Program, Toronto, ON M5G 0A4, Canada
[8] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A1, Canada
[9] Barcelona Supercomp Ctr, Life Sci Dept, Barcelona 08034, Catalonia, Spain
[10] Beth Israel Deaconess Med Ctr, Dept Pathol, 330 Brookline Ave, Boston, MA 02215 USA
[11] Univ Colorado, Dept Biochem, Biofrontiers Inst, Boulder, CO 80301 USA
基金
美国国家卫生研究院; 美国国家科学基金会; 英国惠康基金;
关键词
LONG NONCODING RNAS; TRANSCRIPTION; ANNOTATION; ENHANCERS; IDENTIFICATION; ASSOCIATION; DISSECTION; EXPRESSION; SELECTION; DATABASE;
D O I
10.1101/gr.242222.118
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcription initiates at both coding and noncoding genomic elements, including mRNA and long noncoding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has a different expression profile with lncRNAs and eRNAs being the most tissue specific. How these complex differences in expression profiles and tissue specificities are encoded in a single DNA sequence remains unresolved. Here, we address this question using computational approaches and massively parallel reporter assays (MPRA) surveying hundreds of promoters and enhancers. We find that both divergent lncRNA and mRNA core promoters have higher capacities to drive transcription than nondivergent lncRNA and mRNA core promoters, respectively. Conversely, intergenic lncRNAs (lincRNAs) and eRNAs have lower capacities to drive transcription and are more tissue specific than divergent genes. This higher tissue specificity is strongly associated with having less complex transcription factor (TF) motif profiles at the core promoter. We experimentally validated these findings by testing both engineered single-nucleotide deletions and human single-nucleotide polymorphisms (SNPs) in MPRA. In both cases, we observe that single nucleotides associated with many motifs are important drivers of promoter activity. Thus, we suggest that high TF motif density serves as a robust mechanism to increase promoter activity at the expense of tissue specificity. Moreover, we find that 22% of common SNPs in core promoter regions have significant regulatory effects. Collectively, our findings show that high TF motif density provides redundancy and increases promoter activity at the expense of tissue specificity, suggesting that specificity of expression may be regulated by simplicity of motif usage.
引用
收藏
页码:344 / 355
页数:12
相关论文
共 46 条
[11]   A promoter-level mammalian expression atlas [J].
Forrest, Alistair R. R. ;
Kawaji, Hideya ;
Rehli, Michael ;
Baillie, J. Kenneth ;
de Hoon, Michiel J. L. ;
Haberle, Vanja ;
Lassmann, Timo ;
Kulakovskiy, Ivan V. ;
Lizio, Marina ;
Itoh, Masayoshi ;
Andersson, Robin ;
Mungall, Christopher J. ;
Meehan, Terrence F. ;
Schmeier, Sebastian ;
Bertin, Nicolas ;
Jorgensen, Mette ;
Dimont, Emmanuel ;
Arner, Erik ;
Schmidl, Christian ;
Schaefer, Ulf ;
Medvedeva, Yulia A. ;
Plessy, Charles ;
Vitezic, Morana ;
Severin, Jessica ;
Semple, Colin A. ;
Ishizu, Yuri ;
Young, Robert S. ;
Francescatto, Margherita ;
Alam, Intikhab ;
Albanese, Davide ;
Altschuler, Gabriel M. ;
Arakawa, Takahiro ;
Archer, John A. C. ;
Arner, Peter ;
Babina, Magda ;
Rennie, Sarah ;
Balwierz, Piotr J. ;
Beckhouse, Anthony G. ;
Pradhan-Bhatt, Swati ;
Blake, Judith A. ;
Blumenthal, Antje ;
Bodega, Beatrice ;
Bonetti, Alessandro ;
Briggs, James ;
Brombacher, Frank ;
Burroughs, A. Maxwell ;
Califano, Andrea ;
Cannistraci, Carlo V. ;
Carbajo, Daniel ;
Chen, Yun .
NATURE, 2014, 507 (7493) :462-+
[12]   Genome-wide association study of schizophrenia in Ashkenazi Jews [J].
Goes, Fernando S. ;
McGrath, John ;
Avramopoulos, Dimitrios ;
Wolyniec, Paula ;
Pirooznia, Mehdi ;
Ruczinski, Ingo ;
Nestadt, Gerald ;
Kenny, Eimear E. ;
Vacic, Vladimir ;
Peters, Inga ;
Lencz, Todd ;
Darvasi, Ariel ;
Mulle, Jennifer G. ;
Warren, Stephen T. ;
Pulver, Ann E. .
AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2015, 168 (08) :649-659
[13]   FIMO: scanning for occurrences of a given motif [J].
Grant, Charles E. ;
Bailey, Timothy L. ;
Noble, William Stafford .
BIOINFORMATICS, 2011, 27 (07) :1017-1018
[14]   GENCODE: The reference human genome annotation for The ENCODE Project [J].
Harrow, Jennifer ;
Frankish, Adam ;
Gonzalez, Jose M. ;
Tapanari, Electra ;
Diekhans, Mark ;
Kokocinski, Felix ;
Aken, Bronwen L. ;
Barrell, Daniel ;
Zadissa, Amonida ;
Searle, Stephen ;
Barnes, If ;
Bignell, Alexandra ;
Boychenko, Veronika ;
Hunt, Toby ;
Kay, Mike ;
Mukherjee, Gaurab ;
Rajan, Jeena ;
Despacio-Reyes, Gloria ;
Saunders, Gary ;
Steward, Charles ;
Harte, Rachel ;
Lin, Michael ;
Howald, Cedric ;
Tanzer, Andrea ;
Derrien, Thomas ;
Chrast, Jacqueline ;
Walters, Nathalie ;
Balasubramanian, Suganthi ;
Pei, Baikang ;
Tress, Michael ;
Manuel Rodriguez, Jose ;
Ezkurdia, Iakes ;
van Baren, Jeltje ;
Brent, Michael ;
Haussler, David ;
Kellis, Manolis ;
Valencia, Alfonso ;
Reymond, Alexandre ;
Gerstein, Mark ;
Guigo, Roderic ;
Hubbard, Tim J. .
GENOME RESEARCH, 2012, 22 (09) :1760-1774
[15]   The UCSC Genome Browser Database: update 2006 [J].
Hinrichs, A. S. ;
Karolchik, D. ;
Baertsch, R. ;
Barber, G. P. ;
Bejerano, G. ;
Clawson, H. ;
Diekhans, M. ;
Furey, T. S. ;
Harte, R. A. ;
Hsu, F. ;
Hillman-Jackson, J. ;
Kuhn, R. M. ;
Pedersen, J. S. ;
Pohl, A. ;
Raney, B. J. ;
Rosenbloom, K. R. ;
Siepel, A. ;
Smith, K. E. ;
Sugnet, C. W. ;
Sultan-Qurraie, A. ;
Thomas, D. J. ;
Trumbower, H. ;
Weber, R. J. ;
Weirauch, M. ;
Zweig, A. S. ;
Haussler, D. ;
Kent, W. J. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D590-D598
[16]   An atlas of human long non-coding RNAs with accurate 5′ ends [J].
Hon, Chung-Chau ;
Ramilowski, Jordan A. ;
Harshbarger, Jayson ;
Bertin, Nicolas ;
Rackham, Owen J. L. ;
Gough, Julian ;
Denisenko, Elena ;
Schmeier, Sebastian ;
Poulsen, Thomas M. ;
Severin, Jessica ;
Lizio, Marina ;
Kawaji, Hideya ;
Kasukawa, Takeya ;
Itoh, Masayoshi ;
Burroughs, A. Maxwell ;
Noma, Shohei ;
Djebali, Sarah ;
Alam, Tanvir ;
Medvedeva, Yulia A. ;
Testa, Alison C. ;
Lipovich, Leonard ;
Yip, Chi-Wai ;
Abugessaisa, Imad ;
Mendez, Mickael ;
Hasegawa, Akira ;
Tang, Dave ;
Lassmann, Timo ;
Heutink, Peter ;
Babina, Magda ;
Wells, Christine A. ;
Kojima, Soichi ;
Nakamura, Yukio ;
Suzuki, Harukazu ;
Daub, Carsten O. ;
de Hoon, Michiel J. L. ;
Arner, Erik ;
Hayashizaki, Yoshihide ;
Carninci, Piero ;
Forrest, Alistair R. R. .
NATURE, 2017, 543 (7644) :199-+
[17]   A benchmark of gene expression tissue-specificity metrics [J].
Kryuchkova-Mostacci, Nadezda ;
Robinson-Rechavi, Marc .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (02) :205-214
[18]   Finding the start site: redefining the human initiator element [J].
Kugel, Jennifer F. ;
Goodrich, James A. .
GENES & DEVELOPMENT, 2017, 31 (01) :1-2
[19]   High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing [J].
Lagarde, Julien ;
Uszczynska-Ratajczak, Barbara ;
Carbonell, Silvia ;
Perez-Lluch, Silvia ;
Abad, Amaya ;
Davis, Carrie ;
Gingeras, Thomas R. ;
Frankish, Adam ;
Harrow, Jennifer ;
Guigo, Roderic ;
Johnson, Rory .
NATURE GENETICS, 2017, 49 (12) :1731-+
[20]   Motif comparison based on similarity of binding affinity profiles [J].
Lambert, Samuel A. ;
Albu, Mihai ;
Hughes, Timothy R. ;
Najafabadi, Hamed S. .
BIOINFORMATICS, 2016, 32 (22) :3504-3506