The boundary method for semi-discrete optimal transport partitions and Wasserstein distance computation

被引:10
作者
Dieci, Luca [1 ]
Walsh, J. D., III [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Naval Surface Warfare Ctr, Panama City Div X24, 110 Vernon Ave, Panama City, FL 32407 USA
基金
美国国家科学基金会;
关键词
Optimal transport; Monge-Kantorovich; Semi-discrete; Wasserstein distance; Boundary method; NUMERICAL-SOLUTION; DIAGRAMS; EQUATION;
D O I
10.1016/j.cam.2018.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new technique, which we call the boundary method, for solving semi discrete optimal transport problems with a wide range of cost functions. The boundary method reduces the effective dimension of the problem, thus improving complexity. For cost functions equal to a p-norm with p is an element of (1, infinity), we provide mathematical justification, convergence analysis, and algorithmic development. Our testing supports the boundary method with these p-norms, as well as other, more general cost functions. Published by Elsevier B.V.
引用
收藏
页码:318 / 344
页数:27
相关论文
共 48 条
[1]  
Abedin F., 2016, PREPRINT
[2]  
[Anonymous], LECT NOTES COMPUTER
[3]   Minkowski-type theorems and least-squares clustering [J].
Aurenhammer, F ;
Hoffmann, F ;
Aronov, B .
ALGORITHMICA, 1998, 20 (01) :61-76
[4]   POWER DIAGRAMS - PROPERTIES, ALGORITHMS AND APPLICATIONS [J].
AURENHAMMER, F .
SIAM JOURNAL ON COMPUTING, 1987, 16 (01) :78-96
[5]  
AURENHAMMER F, 1991, COMPUT SURV, V23, P345, DOI 10.1145/116873.116880
[6]  
Aurenhammer F., 1992, Proceedings of the Eighth Annual Symposium on Computational Geometry, P350, DOI 10.1145/142675.142747
[7]   A mixed formulation of the Monge-Kantorovich equations [J].
Barrett, John W. ;
Prigozhin, Leonid .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (06) :1041-1060
[8]   ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS [J].
Benamou, Jean-David ;
Carlier, Guillaume ;
Cuturi, Marco ;
Nenna, Luca ;
Peyre, Gabriel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A1111-A1138
[9]   Numerical solution of the Optimal Transportation problem using the Monge-Ampere equation [J].
Benamou, Jean-David ;
Froese, Brittany D. ;
Oberman, Adam M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 260 :107-126
[10]  
Bertsekas D., 1998, Network Optimization: Continuous and Discrete