Reducibility of finite reflection groups

被引:2
作者
Yu JianMing [1 ]
Jiang GuangFeng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math & Informat Sci, Fac Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection groups; hyperplane arrangement; reducibility;
D O I
10.1007/s11425-011-4341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite (pseudo-)reflection group G naturally gives rise to a hyperplane arrangement, i.e., its reflection arrangement. We show that G is reducible if and only if its reflection arrangement is reducible.
引用
收藏
页码:947 / 948
页数:2
相关论文
共 50 条
[41]   Reducibility on families [J].
I. Sh. Kalimullin∗ ;
V. G. Puzarenko∗∗ .
Algebra and Logic, 2009, 48 :20-32
[42]   REDUCIBILITY ON FAMILIES [J].
Kalimullin, I. Sh. ;
Puzarenko, V. G. .
ALGEBRA AND LOGIC, 2009, 48 (01) :20-32
[43]   Enumeration Reducibility and Positive Reducibility of the Numberings of Families of Arithmetic Sets [J].
M. Kh. Faizrahmanov .
Siberian Mathematical Journal, 2023, 64 :174-180
[44]   Riesz potentials of Radon measures associated to reflection groups [J].
Gallardo, Leonard ;
Rejeb, Chaabane ;
Sifi, Mohamed .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2018, 9 (02) :109-130
[45]   Invariant differential derivations for reflection groups in positive characteristic [J].
Hanson, D. ;
Shepler, A. V. .
ADVANCES IN APPLIED MATHEMATICS, 2024, 156
[46]   COMPARING CODIMENSION AND ABSOLUTE LENGTH IN COMPLEX REFLECTION GROUPS [J].
Foster-Greenwood, Briana .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) :4350-4365
[47]   Exterior algebra structure on relative invariants of reflection groups [J].
Vincent Beck .
Mathematische Zeitschrift, 2011, 267 :261-289
[48]   Exterior algebra structure on relative invariants of reflection groups [J].
Beck, Vincent .
MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) :261-289
[49]   On right-angled reflection groups in hyperbolic spaces [J].
Potyagailo, L ;
Vinberg, E .
COMMENTARII MATHEMATICI HELVETICI, 2005, 80 (01) :63-73
[50]   Q-reducibility and m-reducibility on computably enumerable sets [J].
I. I. Batyrshin .
Siberian Mathematical Journal, 2014, 55 :995-1008