Reducibility of finite reflection groups

被引:2
作者
Yu JianMing [1 ]
Jiang GuangFeng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math & Informat Sci, Fac Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection groups; hyperplane arrangement; reducibility;
D O I
10.1007/s11425-011-4341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite (pseudo-)reflection group G naturally gives rise to a hyperplane arrangement, i.e., its reflection arrangement. We show that G is reducible if and only if its reflection arrangement is reducible.
引用
收藏
页码:947 / 948
页数:2
相关论文
共 50 条
[31]   Reducibility for Schrödinger Operator with Finite Smooth and Time-Quasi-periodic Potential [J].
Jing Li .
Chinese Annals of Mathematics, Series B, 2020, 41 :419-440
[32]   Rational Catalan numbers for complex reflection groups ☆ [J].
Miller, Weston .
JOURNAL OF ALGEBRA, 2025, 672 :10-30
[33]   Invariant theory for coincidental complex reflection groups [J].
Reiner, Victor ;
Shepler, Anne V. ;
Sommers, Eric .
MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) :787-820
[34]   Littlewood-Richardson coefficients for reflection groups [J].
Berenstein, Arkady ;
Richmond, Edward .
ADVANCES IN MATHEMATICS, 2015, 284 :54-111
[35]   Invariant theory for coincidental complex reflection groups [J].
Victor Reiner ;
Anne V. Shepler ;
Eric Sommers .
Mathematische Zeitschrift, 2021, 298 :787-820
[36]   Hurwitz Numbers for the Reflection Groups Bn and Dn [J].
Fesler, R. .
MATHEMATICAL NOTES, 2023, 114 (5-6) :1067-1071
[37]   An Algorithm for Reducibility of 3-arrangements [J].
GAO RUI-MEI AND PEI DONG-HE (School of Mathematics and Statistics .
Communications in Mathematical Research, 2011, 27 (01) :62-68
[38]   Reducibility and discrete series in the case of classical p-adic groups; an approach based on examples [J].
Tadic, Marko .
GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES, 2012, 7 :254-333
[40]   Note on reducibility of parabolic induction for Hermitian quaternionic groups over p-adic fields [J].
Grbac, Neven ;
Pecek, Nevena Jurcevic .
MATHEMATICAL COMMUNICATIONS, 2018, 23 (02) :181-196