Reducibility of finite reflection groups

被引:2
作者
Yu JianMing [1 ]
Jiang GuangFeng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math & Informat Sci, Fac Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection groups; hyperplane arrangement; reducibility;
D O I
10.1007/s11425-011-4341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite (pseudo-)reflection group G naturally gives rise to a hyperplane arrangement, i.e., its reflection arrangement. We show that G is reducible if and only if its reflection arrangement is reducible.
引用
收藏
页码:947 / 948
页数:2
相关论文
共 50 条
[21]   Max filtering with reflection groups [J].
Mixon, Dustin G. ;
Packer, Daniel .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
[22]   Character restrictions and reflection groups [J].
Giannelli, Eugenio ;
Miller, Alexander R. .
JOURNAL OF ALGEBRA, 2019, 531 :336-348
[23]   Crystallographic groups and flat manifolds from complex reflection groups [J].
Ivan Marin .
Geometriae Dedicata, 2016, 182 :233-247
[24]   Crystallographic groups and flat manifolds from complex reflection groups [J].
Marin, Ivan .
GEOMETRIAE DEDICATA, 2016, 182 (01) :233-247
[25]   Reducibility for Schrodinger Operator with Finite Smooth and Time-Quasi-periodic Potential [J].
Li, Jing .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (03) :419-440
[26]   Weighted enumerations on projective reflection groups [J].
Biagioli, Riccardo ;
Caselli, Fabrizio .
ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) :249-268
[27]   Reflection groups and cones of sums of squares [J].
Debus, Sebastian ;
Riener, Cordian .
JOURNAL OF SYMBOLIC COMPUTATION, 2023, 119 :112-144
[28]   BRAID GROUPS OF NORMALIZERS OF REFLECTION SUBGROUPS [J].
Gobet, Thomas ;
Henderson, Anthony ;
Marin, Ivan .
ANNALES DE L INSTITUT FOURIER, 2021, 71 (06) :2273-2304
[29]   Reducibility for Schr?dinger Operator with Finite Smooth and Time-Quasi-periodic Potential [J].
Jing LI .
Chinese Annals of Mathematics,Series B, 2020, (03) :419-440
[30]   Reducibility for Schrödinger Operator with Finite Smooth and Time-Quasi-periodic Potential [J].
Jing Li .
Chinese Annals of Mathematics, Series B, 2020, 41 :419-440