Reducibility of finite reflection groups

被引:2
|
作者
Yu JianMing [1 ]
Jiang GuangFeng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math & Informat Sci, Fac Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection groups; hyperplane arrangement; reducibility;
D O I
10.1007/s11425-011-4341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite (pseudo-)reflection group G naturally gives rise to a hyperplane arrangement, i.e., its reflection arrangement. We show that G is reducible if and only if its reflection arrangement is reducible.
引用
收藏
页码:947 / 948
页数:2
相关论文
共 50 条
  • [11] NORMAL REFLECTION SUBGROUPS OF COMPLEX REFLECTION GROUPS
    Arreche, Carlos E.
    Williams, Nathan F.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (02) : 879 - 917
  • [12] Reflection groups of geodesic spaces and Coxeter groups
    Hosaka, Tetsuya
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (11) : 1860 - 1866
  • [13] REFLECTION GROUPS, REFLECTION ARRANGEMENTS, AND INVARIANT REAL VARIETIES
    Friedl, Tobias
    Riener, Cordian
    Sanyal, Raman
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1031 - 1045
  • [14] Reflection groups on Riemannian manifolds
    Alekseevsky, Dmitri V.
    Kriegl, Andreas
    Losik, Mark
    Michor, Peter W.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (01) : 25 - 58
  • [15] Involutory reflection groups and their models
    Caselli, Fabrizio
    JOURNAL OF ALGEBRA, 2010, 324 (03) : 370 - 393
  • [16] Polynomiality of factorizations in reflection groups
    Polak, Elzbieta
    Ross, Dustin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2023, 75 (01): : 245 - 266
  • [17] Reflection groups on Riemannian manifolds
    Dmitri V. Alekseevsky
    Andreas Kriegl
    Mark Losik
    Peter W. Michor
    Annali di Matematica Pura ed Applicata, 2007, 186
  • [18] Reflection groups acting on their hyperplanes
    Marin, Ivan
    JOURNAL OF ALGEBRA, 2009, 322 (08) : 2848 - 2860
  • [19] Max filtering with reflection groups
    Dustin G. Mixon
    Daniel Packer
    Advances in Computational Mathematics, 2023, 49
  • [20] EIGENSPACE ARRANGEMENTS OF REFLECTION GROUPS
    Miller, Alexander R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8543 - 8578