Reducibility of finite reflection groups

被引:2
|
作者
Yu JianMing [1 ]
Jiang GuangFeng [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math & Informat Sci, Fac Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection groups; hyperplane arrangement; reducibility;
D O I
10.1007/s11425-011-4341-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite (pseudo-)reflection group G naturally gives rise to a hyperplane arrangement, i.e., its reflection arrangement. We show that G is reducible if and only if its reflection arrangement is reducible.
引用
收藏
页码:947 / 948
页数:2
相关论文
共 50 条
  • [1] Reducibility of finite reflection groups
    YU JianMing1
    2Department of Mathematics and Information Science
    ScienceChina(Mathematics), 2012, 55 (05) : 947 - 948
  • [2] Reducibility of finite reflection groups
    JianMing Yu
    GuangFeng Jiang
    Science China Mathematics, 2012, 55 : 947 - 948
  • [3] Reflection groups and polytopes over finite fields, III
    Monson, B.
    Schulte, Egon
    ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (01) : 76 - 94
  • [4] Reflection groups and polytopes over finite fields, II
    Monson, B.
    Schulte, Egon
    ADVANCES IN APPLIED MATHEMATICS, 2007, 38 (03) : 327 - 356
  • [5] Reflection groups and polytopes over finite fields, I
    Monson, B
    Schulte, E
    ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (02) : 290 - 317
  • [6] ON APPROXIMATE AND ACTUAL REDUCIBILITY OF MATRIX GROUPS
    Kuzma, Bojan
    Mastnak, Mitja
    Omladic, Matjaz
    Radjavi, Heydar
    OPERATORS AND MATRICES, 2024, 18 (04): : 891 - 910
  • [7] ERGODICITY, MINIMALITY AND REDUCIBILITY OF COCYCLES ON SOME COMPACT GROUPS
    Hou, Xuanji
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1247 - 1259
  • [8] On approximate versions of reducibility results for matrix groups and semigroups
    Kuzma, Bojan
    Mastnak, Mitja
    Omladic, Matjaz
    Radjavi, Heydar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 577 : 41 - 52
  • [9] Jacobians of reflection groups
    Hartmann, Julia
    Shepler, Anne V.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 123 - 133
  • [10] TORIC REFLECTION GROUPS
    Gobet, Thomas
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 116 (02) : 171 - 199