The Symplectic Critical Surfaces in a kahler Surface

被引:1
|
作者
Han, Xiaoli [1 ]
Li, Jiayu [2 ,3 ]
Sun, Jun [4 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[3] AMSS CAS, Beijing 100190, Peoples R China
[4] Wuhan Univ, Sch Math Sci, Wuhan 430072, Peoples R China
来源
关键词
Minimal surfaces; Holomorphic curves; Symplectic surfaces; MINIMAL-SURFACES;
D O I
10.1007/978-4-431-56021-0_10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the functional L-beta = integral(Sigma) 1/cos(beta) alpha d mu, beta not equal -1 class of symplectic surfaces. We derive the Euler-Lagrange equation. We call such a critical surface a beta-symplectic critical surface. When beta = 0, it is the equation of minimal surfaces. When beta not equal 0, a minimal surface with constant kahler angle satisfies this equation, especially, a holomorphic curve or a special Lagrangian surface satisfies this equation. We study the properties of the beta-symplectic critical surfaces.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 50 条
  • [1] Symplectic critical surfaces in Kahler surfaces
    Han, Xiaoli
    Li, Jiayu
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (02) : 505 - 527
  • [2] The Deformation of Symplectic Critical Surfaces in a Kahler Surface-I
    Han, Xiaoli
    Li, Jiayu
    Sun, Jun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (20) : 6290 - 6328
  • [3] The deformation of symplectic critical surfaces in a Kahler surface-II-compactness
    Han, Xiaoli
    Li, Jiayu
    Sun, Jun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [4] Upper bound of Kahler angles on the β-symplectic critical surfaces
    Zhang, Yuxia
    Zhu, Xiangrong
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (04) : 511 - 519
  • [5] The Second Variation of the Functional L of Symplectic Critical Surfaces in Kahler Surfaces
    Han, Xiaoli
    Li, Jiayu
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2014, 2 (3-4) : 311 - 330
  • [6] Moving symplectic curves in Kahler-Einstein surfaces
    Chen, JY
    Tian, G
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (04): : 541 - 548
  • [7] Moving Symplectic Curves in Kahler-Einstein Surfaces
    Jingyi Chen
    Gang Tian Department of Mathematics. The University of British Columbia. Vancouver. B. C. V6T1Z2 Canada Department of Mathematics. Massachusetts Institute of Technology. Cambridge. MA 02139 U.S.A.
    ActaMathematicaSinica(EnglishSeries), 2000, 16 (04) : 5 - 5
  • [8] Critical symplectic connections on surfaces
    Fox, Daniel J. F.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (06) : 1683 - 1771
  • [9] Gradient flow for β-symplectic critical surfaces
    Han, Xiaoli
    Li, Jiayu
    Sun, Jun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (05): : 1083 - 1116
  • [10] The deformation of symplectic critical surfaces in a Kähler surface-II—compactness
    Xiaoli Han
    Jiayu Li
    Jun Sun
    Calculus of Variations and Partial Differential Equations, 2017, 56