Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras

被引:79
作者
Kang, Seok-Jin [1 ,2 ]
Kashiwara, Masaki [1 ,3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
BASES;
D O I
10.1007/s00222-012-0388-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove Khovanov-Lauda's cyclotomic categorification conjecture for all symmetrizable Kac-Moody algebras. Let be the quantum group associated with a symmetrizable Cartan datum and let V(I >) be the irreducible highest weight -module with a dominant integral highest weight I >. We prove that the cyclotomic Khovanov-Lauda-Rouquier algebra R (I >) gives a categorification of V(I >).
引用
收藏
页码:699 / 742
页数:44
相关论文
共 15 条
[1]  
[Anonymous], 2002, Grad. Stud. Math.
[2]   HIGHEST WEIGHT CATEGORIES ARISING FROM KHOVANOV'S DIAGRAM ALGEBRA III: CATEGORY O [J].
Brundan, Jonathan ;
Stroppel, Catharina .
REPRESENTATION THEORY, 2011, 15 :170-243
[3]   Graded decomposition numbers for cyclotomic Hecke algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :1883-1942
[4]   Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :451-484
[5]   Derived equivalences for symmetric groups and sl2-categorification [J].
Chuang, Joseph ;
Rouquier, Raphael .
ANNALS OF MATHEMATICS, 2008, 167 (01) :245-298
[6]   ON CRYSTAL BASES OF THE Q-ANALOG OF UNIVERSAL ENVELOPING-ALGEBRAS [J].
KASHIWARA, M .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (02) :465-516
[7]  
Kashiwara M., 1996, SELECTA MATH, V3, P415
[8]  
Khovanov M., 2009, Representation Theory, V13, P309
[9]   A DIAGRAMMATIC APPROACH TO CATEGORIFICATION OF QUANTUM GROUPS II [J].
Khovanov, Mikhail ;
Lauda, Aaron D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (05) :2685-2700
[10]  
Lauda A., 2009, ARXIV09091810