A new route to graphene layers by selective laser ablation

被引:53
作者
Dhar, S. [1 ,2 ]
Barman, A. Roy [1 ,3 ]
Ni, G. X. [3 ]
Wang, X. [1 ,3 ]
Xu, X. F. [3 ]
Zheng, Y. [3 ]
Tripathy, S. [4 ]
Ariando [1 ,3 ]
Rusydi, A. [1 ,3 ]
Loh, K. P. [1 ,5 ]
Rubhausen, M. [6 ,7 ]
Castro Neto, A. H. [3 ,8 ]
Ozyilmaz, B. [1 ,3 ]
Venkatesan, T. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, NUSNNI NanoCore, Singapore 117576, Singapore
[2] Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] ASTAR, IMRE, Singapore 117602, Singapore
[5] Natl Univ Singapore, Dept Chem, Singapore 117576, Singapore
[6] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany
[7] Ctr Free Electron Laser Sci CFEL, D-22607 Hamburg, Germany
[8] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
D O I
10.1063/1.3584204
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Selectively creating regions of spatially varying thickness may enable the utilization of the electronic properties of N-layer (N=1 or more) graphene and other similar layered materials (e.g., topological insulators or layered superconductors) for novel devices and functionalities on a single chip. The ablation threshold energy density increases dramatically for decreasing layer numbers of graphene originating from the dimensional crossover of the specific heat. For the 2D regime of graphite (up to N approximate to 7) the dominant flexural mode specific heat (due to its N-1 dependence) gives rise to a strong layer number-dependence on the pulsed laser ablation threshold energy density, while for 3D regime (N >> 7) the ablation threshold saturates due to dominant acoustic mode specific heat. As a result, several energy density windows exist between the minimum energy densities that are required for ablating single, bi, or more layers of graphene, allowing layer number selectivity. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3584204]
引用
收藏
页数:8
相关论文
共 16 条
[1]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[2]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[5]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[6]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[7]   Theory for the ultrafast ablation of graphite films [J].
Jeschke, HO ;
Garcia, ME ;
Bennemann, KH .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[8]   Formation of sp3-Bonded Carbon Nanostructures by Femtosecond Laser Excitation of Graphite [J].
Kanasaki, J. ;
Inami, E. ;
Tanimura, K. ;
Ohnishi, H. ;
Nasu, K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[9]   Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric [J].
Kim, Seyoung ;
Nah, Junghyo ;
Jo, Insun ;
Shahrjerdi, Davood ;
Colombo, Luigi ;
Yao, Zhen ;
Tutuc, Emanuel ;
Banerjee, Sanjay K. .
APPLIED PHYSICS LETTERS, 2009, 94 (06)
[10]   Nanoscopic Coulomb explosion in ultrafast graphite ablation [J].
Lenner, M. ;
Kaplan, A. ;
Palmer, R. E. .
APPLIED PHYSICS LETTERS, 2007, 90 (15)