New Psychological Paradigm for Conditionals and General de Finetti Tables

被引:22
作者
Baratgin, J. [1 ,2 ,3 ]
Over, D. [4 ]
Politzer, G. [3 ]
机构
[1] Univ Paris 08, CHART PARIS, F-93200 St Denis, France
[2] EPHE, Paris, France
[3] Inst Jean Nicod, Paris, France
[4] Univ Durham, Durham DH1 3HP, England
关键词
TRUTH-TABLE; PROBABILITIES; RATIONALITY;
D O I
10.1111/mila.12042
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
The new Bayesian paradigm in the psychology of reasoning aims to integrate the study of human reasoning, decision making, and rationality. It is supported by two findings. One, most people judge the probability of the indicative conditional, P(if A then B), to be the conditional probability, P(B|A), as implied by the Ramsey test. Two, they judge if A then B to be void when A is false. Their three-valued response table used to be called defective', but should be termed the de Finetti table. We show how to study general de Finetti truth tables for negations, conjunctions, disjunctions, and conditionals.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 47 条
[1]  
Adams E. W., 1998, A primer of probability logic
[2]  
[Anonymous], 2007, Bayesian rationality: The probabilistic approach to human reasoning
[3]  
[Anonymous], COGNITION CONDITIONA
[4]  
Beaver David., 1997, HDB LOGIC LANGUAGE, P939, DOI [DOI 10.1016/B978-044481714-3/50022-9, 10.1016/B978-044481714-3/50022-9]
[5]  
Blamey Stephen, 1986, Handbook of philosophical logic: Volume iii: Alternatives in classical logic, P1, DOI [10.1007/978-94-009-5203-41, DOI 10.1007/978-94-009-5203-41]
[6]   A Theory of Utility Conditionals: Paralogical Reasoning From DecisionTheoretic Leakage [J].
Bonnefon, Jean-Francois .
PSYCHOLOGICAL REVIEW, 2009, 116 (04) :888-907
[7]  
De Finetti B., 1974, Theory of Probability, VI
[8]  
de Finetti B. D., 1936, PHILOS STUD, V77, P181
[9]   The Probabilities of Conditionals Revisited [J].
Douven, Igor ;
Verbrugge, Sara .
COGNITIVE SCIENCE, 2013, 37 (04) :711-730
[10]   Indicatives, concessives, and evidential support [J].
Douven, Igor ;
Verbrugge, Sara .
THINKING & REASONING, 2012, 18 (04) :480-499