Quantization of inhomogeneous Lie bialgebras

被引:3
作者
Kulish, PP
Mudrov, AI
机构
[1] Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
quantization; inhomogeneous Lie bialgebras;
D O I
10.1016/S0393-0440(01)00073-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A self-dual class of Lie bialgebra structures (g, g*) on inhomogeneous Lie algebras g describing kinematical symmetries is considered. In that class, both g and g* split into the semi-direct sums g = h (sic) and g* = h* (sic)* with abelian ideals of translations v and h*. We build the explicit quantization of the universal enveloping algebra U (g), including the coproduct, commutation relations among generators, and, in case of coboundary g, the universal R-matrix. This class of Lie bialgebras forms a self-dual category stable under the classical double procedure. The quantization turns out to be a functor to the category of Hopf algebras which commutes with operations of dualization and double. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:64 / 77
页数:14
相关论文
共 27 条
  • [1] Bicrossproduct structure of the null-plane quantum Poincare algebra
    Arratia, O
    Herranz, FJ
    del Olmo, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01): : L1 - L7
  • [2] Barut A., 1977, THEORY GROUP REPRESE
  • [3] BEGGS E, QALG9701041
  • [4] BRESSLER P, MATHQA0007186
  • [5] BURDIK C, HEPTH9303035
  • [6] Chari V., 1995, A Guide to Quantum Groups
  • [7] Graded contractions and bicrossproduct structure of deformed inhomogeneous algebras
    deAzcarraga, JA
    delOlmo, MA
    Bueno, JCP
    Santander, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (09): : 3069 - 3086
  • [8] Drinfeld V.G., 1987, P INT C MATH BERK 19, V1, P798
  • [9] Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
  • [10] DRINFELD VG, 1983, DOKL AKAD NAUK SSSR+, V273, P531