The orthogonal colouring game (vol 795, pg 312, 2019)

被引:0
作者
Andres, Stephan Dominique [1 ]
Huggan, Melissa [2 ]
Mc Inerney, Fionn [3 ]
Nowakowski, Richard J. [4 ]
机构
[1] Fernuniv, Fac Math & Comp Sci, IZ, Univ Str 1, D-58084 Hagen, Germany
[2] Ryerson Univ, Dept Math, Toronto, ON, Canada
[3] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, UMR 5205,LIRIS, Lyon, France
[4] Dalhousie Univ, Dept Math & Stats, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Orthogonal Colouring Game; Orthogonal graph colouring; Mutually orthogonal Latin squares; Scoring game; Games on graphs; Strictly matched involution;
D O I
10.1016/j.tcs.2019.12.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The lower bound for the number of isomorphism classes of graphs admitting a strictly matched involution given in Theorem 15 of our paper on the orthogonal colouring game [1] is incorrect. Here, we prove a weaker lower bound. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 135
页数:3
相关论文
共 2 条
[1]   The orthogonal colouring game [J].
Andres, Stephan Dominique ;
Huggan, Melissa ;
Mc Inerney, Fionn ;
Nowakowski, Richard J. .
THEORETICAL COMPUTER SCIENCE, 2019, 795 :312-325
[2]  
Rezan I., 2019, COMMUNICATION