Non-Locality Effects on the Propagation of Shear Waves in Piezoelectric/Non-local Micropolar Layered Structure

被引:1
|
作者
Singh, K. [1 ]
Sawhney, S. [1 ]
机构
[1] Lovely Profess Univ, Dept Math, Phagwara 144411, Punjab, India
关键词
Shear waves; piezoelectric; non-local micropolar; phase velocity; characteristic length; VIBRATIONS;
D O I
10.3103/S0025654422050235
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Considering the non-local effects in micropolar elastic material this paper studied the propagation of shear waves in a piezoelectric layered non-local micropolar half space composite structure. The general dispersion equation of shear waves in the coupled structure is obtained analytically in the closed form. In the particular case the result obtained is in accordance with the classical Love wave equation. The effects of key factors like non-locality, characteristic length, piezoelectric and elastic constants on the phase velocity of shear waves have been investigated and results are depicted graphically. The theoretical results obtained shows that the phase velocity of shear wave is significantly affected due the presence of non-locality and size effects on small length scale in micropolar elastic material.
引用
收藏
页码:1265 / 1276
页数:12
相关论文
共 50 条
  • [1] Non-Locality Effects on the Propagation of Shear Waves in Piezoelectric/Non-local Micropolar Layered Structure
    K. Singh
    S. Sawhney
    Mechanics of Solids, 2022, 57 : 1265 - 1276
  • [2] Hardy's non-locality and generalized non-local theory
    Choudhary, Sujit K.
    Ghosh, Sibasish
    Kar, Guruprasad
    Kunkri, Samir
    Rahaman, Ramij
    Roy, Anirban
    Quantum Information and Computation, 2010, 10 (9-10): : 859 - 871
  • [3] HARDY'S NON-LOCALITY AND GENERALIZED NON-LOCAL THEORY
    Choudhary, Sujit K.
    Ghosh, Sibasish
    Kar, Guruprasad
    Kunkri, Samir
    Rahaman, Ramij
    Roy, Anirban
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (9-10) : 859 - 871
  • [4] Towards an emerging understanding of non-locality phenomena and non-local transport
    Ida, K.
    Shi, Z.
    Sun, H. J.
    Inagaki, S.
    Kamiya, K.
    Rice, J. E.
    Tamura, N.
    Diamond, P. H.
    Dif-Pradalier, G.
    Zou, X. L.
    Itoh, K.
    Sugita, S.
    Guercan, O. D.
    Estrada, T.
    Hidalgo, C.
    Hahm, T. S.
    Field, A.
    Ding, X. T.
    Sakamoto, Y.
    Oldenbuerger, S.
    Yoshinuma, M.
    Kobayashi, T.
    Jiang, M.
    Hahn, S. H.
    Jeon, Y. M.
    Hong, S. H.
    Kosuga, Y.
    Dong, J.
    Itoh, S. -I.
    NUCLEAR FUSION, 2015, 55 (01)
  • [5] Treatment of non-Markovian effects to investigate non-locality, dense coding and non-local information
    Aiache, Y.
    Seida, C.
    El Anouz, K.
    El Allati, A.
    PHYSICS LETTERS A, 2024, 496
  • [6] Towards quantifying non-local information transfer: finite-bit non-locality
    Steiner, M
    PHYSICS LETTERS A, 2000, 270 (05) : 239 - 244
  • [7] Information propagation in a non-local model with emergent locality
    Kaixin Ji
    Ling-Yan Hung
    Journal of High Energy Physics, 2022
  • [8] Information propagation in a non-local model with emergent locality
    Ji, Kaixin
    Hung, Ling-Yan
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [9] SH Waves Propagation in a Layered Coupled Plate under Non-Local Theory
    Singh, K.
    Kaur, A.
    Monga, M.
    MECHANICS OF SOLIDS, 2024, 59 (05) : 3128 - 3138
  • [10] Non-local defect interaction in one-dimension: weak versus strong non-locality
    Escaff, D.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 62 (01): : 33 - 38