LOCAL DIMENSIONS OF OVERLAPPING SELF-SIMILAR MEASURES

被引:2
作者
Hare, Kathryn E. [1 ]
Hare, Kevin G. [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Local dimension; Bernoulli convolution; Cantor measure; ABSOLUTE CONTINUITY; BERNOULLI;
D O I
10.14321/realanalexch.41.1.0247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any equicontractive, self-similar measure arising from the IFS of contractions (S-j), with self-similar set [0,1], admits an isolated point in its set of local dimensions provided the images of S-j(0,1) (suitably) overlap and the minimal probability is associated with one (resp., both) of the endpoint contractions. Examples include m-fold convolution products of Bernoulli convolutions or Cantor measures with contraction factor exceeding 1/(m + 1) in the biased case and 1/m in the unbiased case. We also obtain upper and lower bounds on the set of local dimensions for various Bernoulli convolutions.
引用
收藏
页码:247 / 265
页数:19
相关论文
共 23 条
[11]   Local Dimensions of Measures of Finite Type II: Measures Without Full Support and With Non-regular Probabilities [J].
Hare, Kathryn E. ;
Hare, Kevin G. ;
Ng, Michael Ka Shing .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (04) :824-867
[12]   A Lower Bound for the Dimension of Bernoulli Convolutions [J].
Hare, Kevin G. ;
Sidorov, Nikita .
EXPERIMENTAL MATHEMATICS, 2018, 27 (04) :414-418
[13]   A lower bound for Garsia's entropy for certain Bernoullic onvolutions [J].
Hare, Kevin G. ;
Sidorov, Nikita .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :130-143
[14]   Multifractal structure of convolution of the Cantor measure [J].
Hu, TY ;
Lau, KS .
ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (01) :1-16
[15]  
Kempton T, 2013, MONATSH MATH, V171, P189, DOI 10.1007/s00605-013-0512-3
[16]  
Peres Y, 2000, PROG PROBAB, V46, P39
[17]  
Renyi A., 1957, ACTA MATH ACAD SCI H, V8, P477, DOI DOI 10.1007/BF02020331
[18]  
Shmerkin P, 2005, ASIAN J MATH, V9, P323
[19]   On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions [J].
Shmerkin, Pablo .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (03) :946-958
[20]  
Solomyak B, 2004, P SYMP PURE MATH, V72, P207