Experimental Study on Permeability Evolution of Deep Coal Considering Temperature

被引:4
|
作者
Wang, Xiangyu [1 ]
Zhang, Lei [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Appl Sci, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Safety & Emergency Management Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
cyclic loading and unloading; deep coal; temperature; permeability; fractional derivative; damage variable; TRANSIENT-PULSE TECHNIQUE; HYDRAULIC-PROPERTIES; ANTHRACITE COAL; STEADY-STATE; PRESSURE; ROCKS; MODEL;
D O I
10.3390/su142214923
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the depletion of shallow mineral resources, the sustainable development and utilization of deep mineral resources will become a normal activity. As a type of clean energy to promote sustainable development, gas in deep coal seams has attracted wide attention. A better understanding of the permeability evolution induced by mining disturbance and the geological environment is of great importance for underground coal exploitation and gas extraction. In order to analyze the evolution of the mechanical properties and permeability of deep coal that are induced by high ground temperature, coal of the Pingdingshan Coal Mine has been investigated, and the seepage tests were carried out by keeping the confining pressure constant and loading and unloading axial stress under different temperature conditions. The effect of temperature on the peak strength and the initial elastic modulus of coal samples is analyzed. The evolution of permeability, which is estimated with the transient pulse method, based on fractional derivative and fracture connectivity, are discussed by establishing the relationship between fracture connectivity and fractional derivative. Meanwhile, the damage variable that is caused by stress and temperature is introduced and the contribution of thermal damage on coal damage accumulation is discussed. A theoretical model is proposed regarding permeability evolution with temperature and stress based on the Cui-Bustin model, which is verified by experimental data. It has been found that the strength and elastic modulus of deep coal decrease nonlinearly with increasing temperature, which demonstrates that temperature has a weakening effect on the mechanical properties of coal. The fracture connectivity and permeability evolution trends with axial strain are consistent under different temperatures, which decrease slowly in the compaction and linear elastic stages, reach the minimum at the volumetric dilation point, gradually increase in the yield stage, then have a sharp increasing trend in the post-peak stage and, finally, become steady in the residual stage. The damage induced by temperature increases with rising temperatures under different external load conditions. When the external load increases gradually, the thermal damage still accumulates, but the thermal damage variable ratio decreases. The proposed permeability model considering temperature and stress can describe the trend of the experimental data. With axial stress increasing, the influence of temperature on permeability decreases, and its leading effect is mainly reflected in the compaction stage and the linear elastic stage of coal.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Experimental study on permeability characteristics and adsorption swelling of coal considering temperature effect
    Li B.
    Yang K.
    Xu J.
    Zhang M.
    Li X.
    1761, China Coal Society (43): : 1761 - 1768
  • [2] Experimental Study on Permeability Evolution of Bituminous Coal Under High Temperature and Volumetric Stress
    Jianhang Shi
    Zengchao Feng
    Dong Zhou
    Xuecheng Li
    Qiaorong Meng
    Rock Mechanics and Rock Engineering, 2023, 56 : 5223 - 5239
  • [3] Experimental Study on Permeability Evolution of Bituminous Coal Under High Temperature and Volumetric Stress
    Shi, Jianhang
    Feng, Zengchao
    Zhou, Dong
    Li, Xuecheng
    Meng, Qiaorong
    ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (07) : 5223 - 5239
  • [4] Analysis of coal permeability evolution mechanism considering the effect of temperature and pore pressure
    Li B.
    Gao Z.
    Yang K.
    Li J.
    Ren C.
    Yuan M.
    Wang H.
    1600, China Coal Society (45): : 626 - 632
  • [5] Study on coal permeability evolution considering adsorptive deformation characteristics of matrix
    Wang, Gang
    Wang, Mingzhen
    Xiao, Zhiyong
    Sun, Xiaoxiang
    Jia, Wenwen
    Jiang, Feng
    Zheng, Chengcheng
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 52 (12): : 193 - 203
  • [6] Simulation Experimental Study on the Permeability of Coal Rock in Deep Mine
    Zhou Gang
    Yu Yanbin
    Cheng Weimin
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 626 - 634
  • [7] An experimental study on permeability characteristics of coal with slippage and temperature effects
    Bobo Li
    Kang Yang
    Peng Xu
    Jiang Xu
    Mei Yuan
    Min Zhang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 175 : 294 - 302
  • [8] Experimental Study on the Effect of Unloading Paths on Coal Damage and Permeability Evolution
    Hao, Congmeng
    Wang, Youpai
    Liu, Guangyi
    PROCESSES, 2024, 12 (08)
  • [9] Experimental study of effect of temperature and stress on permeability characteristics of raw coal and shaped coal
    Hu, Xiong
    Liang, Wei
    Hou, Sijing
    Zhu, Xueguang
    Huang, Weiqiang
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (06): : 1222 - 1229
  • [10] Fractional permeability model for deep coal considering creep effect
    Zhang L.
    Zhou H.-W.
    Wang X.-Y.
    Rong T.-L.
    Wang L.-J.
    Che J.
    Wang L.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2020, 42 (08): : 1516 - 1524