Separate spatial and temporal frequency tuning to visual motion in human MT plus measured with ECoG

被引:7
作者
Gaglianese, Anna [1 ,2 ]
Harvey, Ben M. [3 ]
Vansteensel, Mariska J. [1 ]
Dumoulin, Serge O. [3 ]
Ramsey, Nick F. [1 ]
Petridou, Natalia [2 ]
机构
[1] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Neurol & Neurosurg, Heidelberglaan 100,POB 85500, NL-3584 CX Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiol, NL-3584 CX Utrecht, Netherlands
[3] Univ Utrecht, Helmholtz Inst, Dept Expt Psychol, NL-3584 CS Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
hMT; human electrocorticography; neuronal population responses; speed encoding; visual motion; HUMAN BRAIN; FIELD MAPS; AREAS V1; SPEED; CONTRAST; STRIATE; NEURONS; REPRESENTATION; CELLS; SELECTIVITY;
D O I
10.1002/hbm.23361
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human middle temporal complex (hMT+) has a crucial biological relevance for the processing and detection of direction and speed of motion in visual stimuli. Here, we characterized how neuronal populations in hMT+ encode the speed of moving visual stimuli. We evaluated human intracranial electrocorticography (ECoG) responses elicited by square-wave dartboard moving stimuli with different spatial and temporal frequency to investigate whether hMT+ neuronal populations encode the stimulus speed directly, or whether they separate motion into its spatial and temporal components. We extracted two components from the ECoG responses: (1) the power in the high-frequency band (HFB: 65-95 Hz) as a measure of the neuronal population spiking activity and (2) a specific spectral component that followed the frequency of the stimulus's contrast reversals (SCR responses). Our results revealed that HFB neuronal population responses to visual motion stimuli exhibit distinct and independent selectivity for spatial and temporal frequencies of the visual stimuli rather than direct speed tuning. The SCR responses did not encode the speed or the spatiotemporal frequency of the visual stimuli. We conclude that the neuronal populations measured in hMT+ are not directly tuned to stimulus speed, but instead encode speed through separate and independent spatial and temporal frequency tuning. Hum Brain Mapp 38:293-307, 2017. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 53 条
[1]   REPRESENTATION OF VISUAL FIELD IN STRIATE AND ADJOINING CORTEX OF OWL MONKEY (AOTUS-TRIVIRGATUS) [J].
ALLMAN, JM ;
KAAS, JH .
BRAIN RESEARCH, 1971, 35 (01) :89-&
[2]   Visual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT plus Complex [J].
Amano, Kaoru ;
Wandell, Brian A. ;
Dumoulin, Serge O. .
JOURNAL OF NEUROPHYSIOLOGY, 2009, 102 (05) :2704-2718
[3]   THE CONSEQUENCES OF INACTIVATING AREAS V1 AND V5 ON VISUAL-MOTION PERCEPTION [J].
BECKERS, G ;
ZEKI, S .
BRAIN, 1995, 118 :49-60
[4]  
Branco MP, 2016, P 6 INT BRAIN COMP I, P154
[5]   Speed-dependent motion-sensitive responses in V5: An fMRI study [J].
Chawla, D ;
Phillips, J ;
Buechel, C ;
Edwards, R ;
Friston, KJ .
NEUROIMAGE, 1998, 7 (02) :86-96
[6]   COMPARISON OF NEURONAL SELECTIVITY FOR STIMULUS SPEED, LENGTH, AND CONTRAST IN THE PRESTRIATE VISUAL CORTICAL AREAS V4 AND MT OF THE MACAQUE MONKEY [J].
CHENG, K ;
HASEGAWA, T ;
SALEEM, KS ;
TANAKA, K .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (06) :2269-2280
[7]   RESPONSE PROPERTIES AND RECEPTIVE FIELDS OF CELLS IN AN ANATOMICALLY DEFINED REGION OF SUPERIOR TEMPORAL SULCUS IN MONKEY [J].
DUBNER, R ;
ZEKI, SM .
BRAIN RESEARCH, 1971, 35 (02) :528-&
[8]   Speed and direction response profiles of neurons in macaque MT and MST show modest constraint line tuning [J].
Duijnhouwer, Jacob ;
Noest, Andre J. ;
Lankheet, Martin J. M. ;
van den berg, Albert V. ;
van Wezel, Richard J. A. .
FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2013, 7
[9]   A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning [J].
Dumoulin, SO ;
Bittar, RG ;
Kabani, NJ ;
Baker, CL ;
Le Goualher, G ;
Pike, GB ;
Evans, AC .
CEREBRAL CORTEX, 2000, 10 (05) :454-463
[10]   The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex [J].
ffytche, DH ;
Guy, CN ;
Zeki, S .
BRAIN, 1995, 118 :1375-1394