Chaotic vibrations of circular cylindrical shells:: Galerkin versus reduced-order models via the proper orthogonal decomposition method

被引:60
作者
Amabili, M
Sarkar, A
Païdoussis, MP
机构
[1] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy
[2] Carleton Univ, Sch Engn, Ottawa, ON, Canada
[3] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.jsv.2005.04.034
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The geometric nonlinear response of a water-filled, simply supported circular cylindrical shell to harmonic excitation in the spectral neighbourhood of the fundamental natural frequency is investigated. The response is investigated for a fixed excitation frequency by using the excitation amplitude as bifurcation parameter for a wide range of variation. Bifurcation diagrams of Poincare maps obtained from direct time integration and calculation of the Lyapunov exponents and Lyapunov dimension have been used to study the system. By increasing the excitation amplitude, the response undergoes (i) a period-doubling bifurcation, (ii) subharmonic response, (iii) quasi-periodic response and (iv) chaotic behaviour with up to 16 positive Lyapunov exponents (hyperchaos). The model is based on Donnell's nonlinear shallow-shell theory, and the reference solution is obtained by the Galerkin method. The proper orthogonal decomposition (POD) method is used to extract proper orthogonal modes that describe the system behaviour from time-series response data. These time-series have been obtained via the conventional Galerkin approach (using normal modes as a projection basis) with an accurate model involving 16 degrees of freedom (dofs), validated in previous studies. The POD method, in conjunction with the Galerkin approach, permits to build a lower-dimensional model as compared to those obtainable via the conventional Galerkin approach. Periodic and quasi-periodic response around the fundamental resonance for fixed excitation amplitude, can be very successfully simulated with a 3-dof reduced-order model. However, in the case of large variation of the excitation, even a 5-dof reduced-order model is not fully accurate. Results show that the POD methodology is not as "robust" as the Galerkin method. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:736 / 762
页数:27
相关论文
共 26 条
[1]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part IV:: Large-amplitude vibrations with flow [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 2000, 237 (04) :641-666
[2]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part III:: Truncation effect without flow and experiments [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 2000, 237 (04) :617-640
[3]   Non-linear vibrations of doubly curved shallow shells [J].
Amabili, M .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (05) :683-710
[4]   Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction [J].
Amabili, Marco ;
Païdoussis, Michael P. .
Applied Mechanics Reviews, 2003, 56 (04) :349-356
[5]   Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method [J].
Amabili, M ;
Sarkar, A ;
Païdoussis, MP .
JOURNAL OF FLUIDS AND STRUCTURES, 2003, 18 (02) :227-250
[6]   A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach [J].
Amabili, M .
JOURNAL OF SOUND AND VIBRATION, 2003, 264 (05) :1091-1125
[7]   Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections [J].
Amabili, M .
JOURNAL OF SOUND AND VIBRATION, 2003, 262 (04) :921-975
[8]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid.: Part I:: Stability [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 1999, 225 (04) :655-699
[9]   Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II:: Large-amplitude vibrations without flow [J].
Amabili, M ;
Pellicano, F ;
Païdoussis, MP .
JOURNAL OF SOUND AND VIBRATION, 1999, 228 (05) :1103-1124
[10]  
[Anonymous], 1998, AUTO 97 CONTINUATION