Infinite horizon optimal control of forward-backward stochastic differential equations with delay

被引:44
作者
Agram, Nacira [1 ]
Oksendal, Bernt [2 ]
机构
[1] Univ Med Khider, Lab Appl Math, Biskra 07000, Algeria
[2] Univ Oslo, CMA, N-0316 Oslo, Norway
基金
欧洲研究理事会;
关键词
Infinite horizon; Optimal control; Stochastic delay equation; Levy processes; Maximum principle; Partial information; SYSTEMS;
D O I
10.1016/j.cam.2013.04.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a problem of optimal control of an infinite horizon system governed by forward-backward stochastic differential equations with delay. Sufficient and necessary maximum principles for optimal control under partial information in infinite horizon are derived. We illustrate our results by an application to a problem of optimal consumption with respect to recursive utility from a cash flow with delay. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:336 / 349
页数:14
相关论文
共 24 条
[1]  
Agram N., 2012, MAXIMUM PRINCIPLE IN
[2]  
Al-Hussein A., 2013, MAXIMUM PRINCIPLE OP
[3]  
Atonelli F, 1993, Ann. Appl. Probab., V3, P777, DOI 10.1214/aoap/1177005363
[4]   Existence of optimal controls for systems driven by FBSDEs [J].
Bahlali, Khaled ;
Gherbal, Boulekhrass ;
Mezerdi, Brahim .
SYSTEMS & CONTROL LETTERS, 2011, 60 (05) :344-349
[5]  
Bahlali S, 2006, RANDOM OPERATORS STO, V14, P291
[6]  
Bordigoni G, 2007, ABEL SYMP, V2, P125
[7]  
Di Nunno G, 2009, UNIVERSITEXT, P1
[8]   STOCHASTIC DIFFERENTIAL UTILITY [J].
DUFFIE, D ;
EPSTEIN, LG .
ECONOMETRICA, 1992, 60 (02) :353-394
[9]  
Haadem S., 2013, AUTOMATICA, DOI DOI 10.1016/J.AUT0MATICA.2013.04.01
[10]   SOLVING FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL-EQUATIONS EXPLICITLY - A 4 STEP SCHEME [J].
MA, J ;
PROTTER, P ;
YONG, JM .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (03) :339-359