A Deep Learning Model System for Diagnosis and Management of Adnexal Masses

被引:14
作者
Li, Jianan [1 ]
Chen, Yixin [2 ]
Zhang, Minyu [3 ]
Zhang, Peifang [2 ]
He, Kunlun [4 ,5 ]
Yan, Fengqin [6 ]
Li, Jingbo [1 ]
Xu, Hong [1 ]
Burkhoff, Daniel [7 ]
Luo, Yukun [1 ]
Wang, Longxia [1 ]
Li, Qiuyang [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Ultrasound, Ctr 1, Beijing 100853, Peoples R China
[2] Zhongguancun Med Engn Ctr, Machine Learning Dept, BioMind Technol, Beijing 100872, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Dept Ultrasound, Ctr 7, Beijing 100700, Peoples R China
[4] Chinese Peoples Liberat Army Gen Hosp, Med Big Data Res Ctr, Beijing Key Lab Precis Med Chron Heart Failure &, Beijing 100853, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Med Big Data Res Ctr, Minist Ind & Informat Technol Biomed Engn & Trans, Key Lab, Beijing 100853, Peoples R China
[6] Hengshui Peoples Hosp, Dept Ultrasound, Hengshui 053000, Peoples R China
[7] Cardiovasc Res Fdn, Clin Trials Ctr, Heart Failure Hemodynam & MCS Res, New York, NY 10019 USA
关键词
deep learning; adnexal masses; borderline; pathological subtypes; OVARIAN-CANCER; EXTERNAL VALIDATION; TUMORS; MULTICENTER; MALIGNANCY; CARCINOMA; SURGERY; RULES; RISK;
D O I
10.3390/cancers14215291
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary This was a multicenter study on the development of a deep learning (DL) model system to diagnose adnexal masses on ultrasound images. There were three innovation points. First, the DL system contained five models: a detector, a mass segmentor, a papillary segmentor, a type classifier, and a pathological subtype classifier. Therefore, the system could finish the entire diagnosis process for adnexal masses on ultrasound images. Second, the DL system could discriminate borderline tumors from benign and malignant tumors with the assistance of annotations for papillary projections (which is a significant morphological feature of borderline tumors). Third, the benign tumors were classified into five pathological subtypes with different risks of clinical complication and accurate disease. Appropriate clinical management of adnexal masses requires a detailed diagnosis. We retrospectively collected ultrasound images of 1559 cases from the first Center of Chinese PLA General Hospital and developed a fully automatic deep learning (DL) model system to diagnose adnexal masses. The DL system contained five models: a detector, a mass segmentor, a papillary segmentor, a type classifier, and a pathological subtype classifier. To test the DL system, 462 cases from another two hospitals were recruited. The DL system identified benign, borderline, and malignant tumors with macro-F1 scores that varied from 0.684 to 0.791, a benefit to preventing both delayed and overextensive treatment. The macro-F1 scores of the pathological subtype classifier to categorize the benign masses varied from 0.714 to 0.831. The detailed classification can inform clinicians of the corresponding complications of each pathological subtype of benign tumors. The distinguishment between borderline and malignant tumors and inflammation from other subtypes of benign tumors need further study. The accuracy and sensitivity of the DL system were comparable to that of the expert and intermediate sonographers and exceeded that of the junior sonographer.
引用
收藏
页数:17
相关论文
共 44 条
[1]   External validation of IOTA simple descriptors and simple rules for classifying adnexal masses [J].
Alcazar, J. L. ;
Pascual, M. A. ;
Graupera, B. ;
Auba, M. ;
Errasti, T. ;
Olartecoechea, B. ;
Ruiz-Zambrana, A. ;
Hereter, L. ;
Ajossa, S. ;
Guerriero, S. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2016, 48 (03) :397-402
[2]   Expectant management of adnexal masses in selected premenopausal women: a prospective observational study [J].
Alcazar, J. L. ;
Olartecoechea, B. ;
Guerriero, S. ;
Jurado, M. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2013, 41 (05) :582-588
[3]  
American College of Obstetricians and Gynecologists Committee on Practice BulletinsGynecology, 2016, Obstet Gynecol, V128, pe210
[4]   Gynecologic Imaging Reporting and Data System A New Proposal for Classifying Adnexal Masses on the Basis of Sonographic Findings [J].
Amor, Fernando ;
Vaccaro, Humberto ;
Luis Alcazar, Juan ;
Leon, Mauricio ;
Manuel Craig, Jose ;
Martinez, Jaime .
JOURNAL OF ULTRASOUND IN MEDICINE, 2009, 28 (03) :285-291
[5]   O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee [J].
Andreotti, Rochelle F. ;
Timmerman, Dirk ;
Strachowski, Lori M. ;
Froyman, Wouter ;
Benacerraf, Beryl R. ;
Bennett, Genevieve L. ;
Bourne, Tom ;
Brown, Douglas L. ;
Coleman, Beverly G. ;
Frates, Mary C. ;
Goldstein, Steven R. ;
Hamper, Ulrike H. ;
Horrow, Mindy M. ;
Hernanz-Schulman, Marta ;
Reinhold, Caroline ;
Rose, Stephen L. ;
Whitcomb, Brad P. ;
Wolfman, Wendy L. ;
Glanc, Phyllis .
RADIOLOGY, 2020, 294 (01) :168-185
[6]   Imaging in gynecological disease (17): ultrasound features of malignant ovarian yolk sac tumors (endodermal sinus tumors) [J].
Anfelter, P. ;
Testa, A. ;
Chiappa, V. ;
Froyman, W. ;
Fruscio, R. ;
Guerriero, S. ;
Alcazar, J. L. ;
Mascillini, F. ;
Pascual, M. A. ;
Sibal, M. ;
Savelli, L. ;
Zannoni, G. F. ;
Timmerman, D. ;
Epstein, E. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2020, 56 (02) :276-284
[7]   Ovarian Cancer, Version 2.2020 [J].
Armstrong, Deborah K. ;
Alvarez, Ronald D. ;
Bakkum-Gamez, Jamie N. ;
Barroilhet, Lisa ;
Behbakht, Kian ;
Berchuck, Andrew ;
Chen, Lee-may ;
Cristea, Mihaela ;
DeRosa, Maria ;
Eisenhauer, Eric L. ;
Gershenson, David M. ;
Gray, Heidi J. ;
Grisham, Rachel ;
Hakam, Ardeshir ;
Jain, Angela ;
Karam, Amer ;
Konecny, Gottfried E. ;
Leath, Charles A., III ;
Liu, Joyce ;
Mahdi, Haider ;
Martin, Lainie ;
Matei, Daniela ;
McHale, Michael ;
McLean, Karen ;
Miller, David S. ;
O'Malley, David M. ;
Percac-Lima, Sanja ;
Ratner, Elena ;
Remmenga, Steven W. ;
Vargas, Roberto ;
Werner, Theresa L. ;
Zsiros, Emese ;
Burns, Jennifer L. ;
Engh, Anita M. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (02) :191-+
[8]   An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J].
Arnaout, Rima ;
Curran, Lara ;
Zhao, Yili ;
Levine, Jami C. ;
Chinn, Erin ;
Moon-Grady, Anita J. .
NATURE MEDICINE, 2021, 27 (05) :882-+
[9]   A case-based interpretable deep learning model for classification of mass lesions in digital mammography [J].
Barnett, Alina Jade ;
Schwartz, Fides Regina ;
Tao, Chaofan ;
Chen, Chaofan ;
Ren, Yinhao ;
Lo, Joseph Y. ;
Rudin, Cynthia .
NATURE MACHINE INTELLIGENCE, 2021, 3 (12) :1061-+
[10]   Gynecology Imaging Reporting and Data System (GI-RADS): diagnostic performance and inter-reviewer agreement [J].
Basha, Mohammad Abd Alkhalik ;
Refaat, Rania ;
Ibrahim, Safaa A. ;
Madkour, Nadia M. ;
Awad, Awad Mahmoud ;
Mohamed, Elshaimaa Mohamed ;
El Sammak, Ahmed A. ;
Zaitoun, Mohamed M. A. ;
Dawoud, Hitham A. ;
Khamis, Mai E. M. ;
Mohamed, Heba A. E. ;
El-Maghraby, Ahmed Mohamed ;
Abdalla, Ahmed A. El-Hamid M. ;
Assy, Mostafa Mohamad ;
Nada, Mohamad Gamal ;
Obaya, Ahmed Ali ;
Abdelbary, Eman H. .
EUROPEAN RADIOLOGY, 2019, 29 (11) :5981-5990