central nervous system;
hypothalamus;
positron emission;
tomography;
thermoregulation;
D O I:
10.1152/japplphysiol.00072.2001
中图分类号:
Q4 [生理学];
学科分类号:
071003 ;
摘要:
Whole body hyperthermia may produce vasodialation, nausea, and altered cognitive function. Animal research has identified brain regions that have important roles in thermoregulation. However, differences in both the cognitive and sweating abilities of humans and animals implicate the need for human research. Positron emission tomography (PET) was used to identify brain regions with altered activity during systemic hyperthermia. Human subjects were studied under cool (control) conditions and during steady-state hyperthermia induced by means of a liquid-conditioned suit perfused with hot water. PET images were obtained by injecting [F-18] fluorodeoxyglucose, waiting 20 min for brain uptake, and then scanning for 10 min. Heating was associated with a 23% increase in resting metabolic rate. Significant increases in cerebral metabolic rate occurred in the hypothalamus, thalamus, corpus callosum, cingulate gyrus, and cerebellum. In contrast, significant decreases occurred in the caudate, putamen, insula, and posterior cingulum. These results are important for understanding the mechanisms responsible for altered cognitive and systemic responses during hyperthermia. Novel regions (e.g., lateral cerebellum) with possible thermoregulatory roles were identified.