Multilayer perceptron architecture optimization using parallel computing techniques

被引:50
作者
Castro, Wilson [1 ]
Oblitas, Jimy [2 ,4 ]
Santa-Cruz, Roberto [3 ]
Avila-George, Himer [5 ]
机构
[1] Univ Privada Norte, Fac Ingn, Cajamarca, Peru
[2] Ctr Invest & Innovac Agroind Peruana, Amazonas, Peru
[3] Univ Nacl Toribio Rodriguez de Mendoza, Fac Ingn Sistemas & Mecan Elect, Chachapoyas, Peru
[4] Univ Lleida, Dept Tecnol Alimentos, Escuela Doctorado, Lleida, Spain
[5] CONACYT CICESE, Unidad Transferencia Tecnol Tepic, Tepic, Nayarit, Mexico
关键词
NEURAL-NETWORKS; CLASSIFICATION; ALGORITHM; CANCER;
D O I
10.1371/journal.pone.0189369
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The objective of this research was to develop a methodology for optimizing multilayer-perceptron- type neural networks by evaluating the effects of three neural architecture parameters, namely, number of hidden layers (HL), neurons per hidden layer (NHL), and activation function type (AF), on the sum of squares error (SSE). The data for the study were obtained from quality parameters (physicochemical and microbiological) of milk samples. Architectures or combinations were organized in groups (G1, G2, and G3) generated upon interspersing one, two, and three layers. Within each group, the networks had three neurons in the input layer, six neurons in the output layer, three to twenty-seven NHL, and three AF (tan-sig, log-sig, and linear) types. The number of architectures was determined using three factorial-type experimental designs, which reached 63, 2 187, and 50 049 combinations for G1, G2 and G3, respectively. Using MATLAB 2015a, a logical sequence was designed and implemented for constructing, training, and evaluating multilayer-perceptron-type neural networks using parallel computing techniques. The results show that HL and NHL have a statistically relevant effect on SSE, and from two hidden layers, AF also has a significant effect; thus, both AF and NHL can be evaluated to determine the optimal combination per group. Moreover, in the three study groups, it is observed that there is an inverse relationship between the number of processors and the total optimization time.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Ananthi J, 2016, IIOAB J, V7, P47
[2]  
[Anonymous], RLA2904 FAODIGESA
[3]  
[Anonymous], CONVICCIONES
[4]  
[Anonymous], 2013, NESTL RESP SOURC GUI
[5]  
[Anonymous], AL RAFADAIN ENG J
[6]  
[Anonymous], VINCULOS
[7]  
[Anonymous], AOAC OFF METH AN
[8]  
[Anonymous], MEDELLIN
[9]  
[Anonymous], INT J COMPUTER SCI
[10]  
[Anonymous], U SCI