Black-hole spectroscopy: testing general relativity through gravitational-wave observations

被引:286
|
作者
Dreyer, O
Kelly, B
Krishnan, B
Finn, LS
Garrison, D
Lopez-Aleman, R
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2G9, Canada
[2] Penn State Univ, Ctr Gravitat Wave Phys, Ctr Gravitat Phys & Geometry, Davey Lab 104,Dept Phys, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
[4] Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[5] Penn State Univ, Dept Astron & Astrophys, Davey Lab 104, University Pk, PA 16802 USA
[6] Univ Houston Clear Lake, Houston, TX 77058 USA
[7] Univ Puerto Rico, Dept Phys Sci, Rio Piedras, PR 00931 USA
关键词
D O I
10.1088/0264-9381/21/4/003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources.
引用
收藏
页码:787 / 803
页数:17
相关论文
共 50 条
  • [31] Inferring prompt black-hole formation in neutron star mergers from gravitational-wave data
    Agathos, Michalis
    Zappa, Francesco
    Bernuzzi, Sebastiano
    Perego, Albino
    Breschi, Matteo
    Radice, David
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [32] Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance (vol 102, 161101, 2009)
    Saito, Ryo
    Yokoyama, Jun'ichi
    PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [33] Detecting black-hole binary clustering via the second-generation gravitational-wave detectors
    Namikawa, Toshiya
    Nishizawa, Atsushi
    Taruya, Atsushi
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [34] Gravitational wave inference on a numerical-relativity simulation of a black hole merger beyond general relativity
    Okounkova, Maria
    Isi, Maximiliano
    Chatziioannou, Katerina
    Farr, Will M.
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [35] Gravitational-wave Capture in Spinning Black Hole Encounters
    Bae, Yeong-Bok
    Lee, Hyung Mok
    Kang, Gungwon
    ASTROPHYSICAL JOURNAL, 2020, 900 (02):
  • [36] Empirical tests of the black hole no-hair conjecture using gravitational-wave observations
    Carullo, Gregorio
    van der Schaaf, Laura
    London, Lionel
    Pang, Peter T. H.
    Tsang, Ka Wa
    Hannuksela, Otto A.
    Meidam, Jeroen
    Agathos, Michalis
    Samajdar, Anuradha
    Ghosh, Archisman
    Li, Tjonnie G. F.
    Del Pozzo, Walter
    Van Den Broeck, Chris
    PHYSICAL REVIEW D, 2018, 98 (10)
  • [37] Tests of general relativity with gravitational-wave observations using a flexible theory-independent method
    Mehta, Ajit Kumar
    Buonanno, Alessandra
    Cotesta, Roberto
    Ghosh, Abhirup
    Sennett, Noah
    Steinhoff, Jan
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [38] Measuring stochastic gravitational-wave energy beyond general relativity
    Isi, Maximiliano
    Stein, Leo C.
    PHYSICAL REVIEW D, 2018, 98 (10)
  • [39] A new type of nonsingular black-hole solution in general relativity
    Klinkhamer, F. R.
    MODERN PHYSICS LETTERS A, 2014, 29 (19)
  • [40] Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
    Gair, Jonathan R.
    Vallisneri, Michele
    Larson, Shane L.
    Baker, John G.
    LIVING REVIEWS IN RELATIVITY, 2013, 16