Distribution of xp in some molecular rotational states

被引:5
作者
Liu, Q. H. [1 ,2 ]
机构
[1] Hunan Univ, Sch Theoret Phys, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Geometric momentum; Spherical harmonics; Posmom operator; Posmometry; RIEMANN ZEROS; QUANTUM; PARTICLE; MOMENTUM;
D O I
10.1016/j.physleta.2014.01.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Developing the analysis of the distribution of the so-called posmom xp to some molecular rotational states for diatomic molecules and spherical cage molecules, we obtain posmometry (introduced recently by Bernard and Gill, 2010 [5]) of the spherical harmonics and demonstrate that it is similar to the momentum distributions of the stationary states for a one-dimensional simple harmonic oscillator. The results are not only potentially experimentally testable but also reflect a fact that the embedding of the two-dimensional spherical surface S-2 in three-dimensional flat space R-3 is physically self-consistent and appealing. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:785 / 789
页数:5
相关论文
共 29 条
[1]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[2]  
[Anonymous], 2006, RIEMANNIAN GEOMETRY, DOI DOI 10.1017/CBO9780511616822
[3]   Distribution of r12 • p12 in quantum systems [J].
Bernard, Yves A. ;
Loos, Pierre-Francois ;
Gill, Peter M. W. .
MOLECULAR PHYSICS, 2013, 111 (16-17) :2414-2426
[4]   Posmom: The Unobserved Observable [J].
Bernard, Yves A. ;
Gill, Peter M. W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (08) :1254-1258
[5]   The distribution of r.p in quantum mechanical systems [J].
Bernard, Yves A. ;
Gill, Peter M. W. .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   A compact hamiltonian with the same asymptotic mean spectral density as the Riemann zeros [J].
Berry, M. V. ;
Keating, J. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
[7]   The Riemann zeros and eigenvalue asymptotics [J].
Berry, MV ;
Keating, JP .
SIAM REVIEW, 1999, 41 (02) :236-266
[8]   CONFORMAL INVARIANCE IN QUANTUM-MECHANICS [J].
DEALFARO, V ;
FUBINI, S ;
FURLAN, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 34 (04) :569-612
[9]  
Gill PMW, 2011, ANNU REP PROG CHEM C, V107, P229, DOI 10.1039/c1pc90008k
[10]   A Dirac-type variant of the xp-model and the Riemann zeros [J].
Gupta, Kumar S. ;
Harikumar, E. ;
de Queiroz, Amilcar R. .
EPL, 2013, 102 (01)