Asymptotic behavior of nonexpansive sequences and mean points

被引:4
作者
Jung, JS
Park, JS
机构
关键词
asymptotic behavior; Banach limit; mean point; nonexpansive sequence;
D O I
10.1090/S0002-9939-96-03039-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a real Banach space with norm \\.\\ and let {x(n)}(n greater than or equal to 0) be a nonexpansive sequence in E (i.e., \\x(i)+1-x(j)+(1)\\ less than or equal to \\x(i)-x(j)\\ for all i, j greater than or equal to 0). Let K = boolean AND(n=1)(infinity) <(co)over bar>{{x(i)-x(i-1)}(i greater than or equal to n}). We deal with the mean point of {x(n)/n} concerning a Banach limit. mie Show that if E is reflexive and d = d(0, K), then d = d(0,<(co)over bar>{x(n)-x(0)/n}) and there exists a unique point z(0) with \\z(0)\\ = d such that z(0) is an element of <(co)over bar>{x(n)-x(0)/n}. This result is applied to obtain the weak and strong convergence of {x(n)/n}.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 11 条
[1]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[2]   SOME GEOMETRIC PROPERTIES OF THE SPHERES IN A NORMED LINEAR SPACE [J].
FAN, K ;
GLICKSBERG, I .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (04) :553-568
[3]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, V83
[4]   ASYMPTOTIC-BEHAVIOR OF NON-EXPANSIVE MAPPINGS IN NORMED LINEAR-SPACES [J].
KOHLBERG, E ;
NEYMAN, A .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 38 (04) :269-275
[5]   ASYMPTOTIC-BEHAVIOR OF NONEXPANSIVE-MAPPINGS IN UNIFORMLY CONVEX BANACH-SPACES [J].
KOHLBERG, E ;
NEYMAN, A .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (09) :698-700
[6]   ASYMPTOTIC BEHAVIOR OF CONTRACTIONS IN HILBERT SPACE [J].
PAZY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (02) :235-&
[7]   THE ASYMPTOTICS OF NONEXPANSIVE ITERATIONS [J].
PLANT, AT ;
REICH, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 54 (03) :308-319
[9]  
REICH S, 1981, J MATH ANAL APPL, V78, P113
[10]   ASYMPTOTIC-BEHAVIOR OF UNBOUNDED NONEXPANSIVE SEQUENCES IN BANACH-SPACES [J].
ROUHANI, BD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) :951-956