Advances and Challenges of Optical Neural Networks

被引:12
作者
Chen Hongwei [1 ,2 ]
Yu Zhenming [3 ]
Zhang Tian [3 ]
Zang Yubin [1 ,2 ]
Dan Yihang [3 ]
Xu Kun [3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing 100084, Peoples R China
[3] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG | 2020年 / 47卷 / 05期
关键词
optics in computing; neural networks; optoelectronic technology; artificial intelligence; ABSORPTION; DESIGN;
D O I
10.3788/CJL202047.0500004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Neural networks, as one of the most representative techniques in artificial intelligence, have been in rapid development towards high computational speed and low power cost. Due to intrinsic limitations brought by electronic devices, it can be hard for electronic implemented neural networks to further improve these two performances. Optical neural networks can combine both optoelectronic technique and neural network model to provide ways to break the bottleneck. In order to have a brighter view on the history, frontiers and future of optical neural networks, optical neural networks of feed -forward, recurrent and spiking models arc illustrated in this paper. Challenges and future trends of optical neural networks on in situ training, nonlinear computing, expanding scale and applications will thus be revealed.
引用
收藏
页数:12
相关论文
共 55 条
[1]  
Al-Qizwini M, 2017, IEEE INT VEH SYM, P89, DOI 10.1109/IVS.2017.7995703
[2]  
Bagherian H, 2019, ON CHIP OPTICAL CONV
[3]   Monolayer graphene as a saturable absorber in a mode-locked laser [J].
Bao, Qiaoliang ;
Zhang, Han ;
Ni, Zhenhua ;
Wang, Yu ;
Polavarapu, Lakshminarayana ;
Shen, Zexiang ;
Xu, Qing-Hua ;
Tang, Dingyuan ;
Loh, Kian Ping .
NANO RESEARCH, 2011, 4 (03) :297-307
[4]  
[包秀荣 Bao Xiurong], 2015, [激光与光电子学进展, Laser & Optoelectronics Progress], V52, P030005
[5]   Error-backpropagation in temporally encoded networks of spiking neurons [J].
Bohte, SM ;
Kok, JN ;
La Poutré, H .
NEUROCOMPUTING, 2002, 48 :17-37
[6]   Optical signal processing using nonlinear distributed feedback structures [J].
Brzozowski, L ;
Sargent, EH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (05) :550-555
[7]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[8]   Optimal design for universal multiport interferometers [J].
Clements, William R. ;
Humphreys, Peter C. ;
Metcalf, Benjamin J. ;
Kolthammer, W. Steven ;
Walmsley, Ian A. .
OPTICA, 2016, 3 (12) :1460-1465
[9]   All-optical reservoir computer based on saturation of absorption [J].
Dejonckheere, Antoine ;
Duport, Francois ;
Smerieri, Anteo ;
Fang, Li ;
Oudar, Jean-Louis ;
Haelterman, Marc ;
Massar, Serge .
OPTICS EXPRESS, 2014, 22 (09) :10868-10881
[10]   All-optical reservoir computing [J].
Duport, Francois ;
Schneider, Bendix ;
Smerieri, Anteo ;
Haelterman, Marc ;
Massar, Serge .
OPTICS EXPRESS, 2012, 20 (20) :22783-22795