A globalization strategy for the multigrid solution of elliptic optimal control problems

被引:15
作者
Borzì, A [1 ]
Kunisch, K [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Wissensch Rech, A-8010 Graz, Austria
关键词
optimal control problems; globalization strategy; multigrid methods;
D O I
10.1080/10556780500099944
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A globalization strategy for multigrid schemes solving optimal control problems is presented. This approach searches for possible negative eigenvalues of the reduced Hessian considered at the coarsest grid of the multigrid process. If negative eigenvalues are detected, a globalization step in the direction of negative curvature is performed to escape undesired maxima or saddle points. It is shown that the multigrid solution step provides a descent update. Examples are given to illustrate and validate the present approach.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 15 条
[1]  
ARIAN E, 1995, 7 COPP MOUNT C MULT, P15
[2]   The numerical solution of the steady state solid fuel ignition model and its optimal control [J].
Borzì, A ;
Kunisch, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) :263-284
[3]   ACCURACY AND CONVERGENCE PROPERTIES OF THE FINITE DIFFERENCE MULTIGRID SOLUTION OF AN OPTIMAL CONTROL OPTIMALITY SYSTEM [J].
Borzi, Alfio ;
Kunisch, Karl ;
Kwak, Do Y. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) :1477-1497
[4]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[5]   Multigrid optimization in applications [J].
Dreyer, T ;
Maar, B ;
Schulz, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 120 (1-2) :67-84
[6]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716
[7]   ANALYSIS OF A DAMPED NONLINEAR MULTILEVEL METHOD [J].
HACKBUSCH, W ;
REUSKEN, A .
NUMERISCHE MATHEMATIK, 1989, 55 (02) :225-246
[8]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0
[9]  
Lions J.-L., 1971, OPTIMAL CONTROL SYST
[10]   NEWTON-TYPE MINIMIZATION VIA THE LANCZOS METHOD [J].
NASH, SG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :770-788