Image super-resolution reconstruction based on sparse representation and deep learning

被引:35
作者
Zhang, Jing [1 ]
Shao, Minhao [1 ]
Yu, Lulu [1 ]
Li, Yunsong [1 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse representation; Deep learning; Super-resolution; Feature fusion;
D O I
10.1016/j.image.2020.115925
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super-resolution reconstruction technology has important scientific significance and application value in the field of image processing by performing image restoration processing on one or more low-resolution images to improve image spatial resolution. Based on the SCSR algorithm and VDSR network, in order to further improve the image reconstruction quality, an image super-resolution reconstruction algorithm combined with multi-residual network and multi-feature SCSR(MRMFSCSR) is proposed. Firstly, at the sparse reconstruction stage, according to the characteristics of image blocks, our algorithm extracts the contour features of non-flat blocks by NSCT transform, extracts the texture features of flat blocks by Gabor transform, then obtains the reconstructed high-resolution (HR) images by using sparse models. Secondly, according to improve the VDSR deep network and introduce the feature fusion idea, the multi-residual network structure (MR) is designed. The reconstructed HR image obtained by the sparse reconstruction stage is used as the input of the MR network structure to optimize the high-frequency detail residual information. Finally, we can obtain a higher quality super-resolution image compared with the SCSR algorithm and the VDSR algorithm.
引用
收藏
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 2016, IEEE C COMP VIS PATT
[2]   Limits on super-resolution and how to break them [J].
Baker, S ;
Kanade, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (09) :1167-1183
[3]  
Dai S., 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition, P1, DOI DOI 10.1109/CVPR.2007.383028
[4]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[5]   Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization [J].
Dong, Weisheng ;
Zhang, Lei ;
Shi, Guangming ;
Wu, Xiaolin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (07) :1838-1857
[6]   Fast and robust multiframe super resolution [J].
Farsiu, S ;
Robinson, MD ;
Elad, M ;
Milanfar, P .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) :1327-1344
[7]  
Fu CH, 2014, INT CONF DIGIT SIG, P449, DOI 10.1109/ICDSP.2014.6900704
[8]   Joint MAP registration and high-resolution image estimation using a sequence of undersampled images [J].
Hardie, RC ;
Barnard, KJ ;
Armstrong, EE .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (12) :1621-1633
[9]  
HE KM, 2016, PROC CVPR IEEE, P770, DOI DOI 10.1109/CVPR.2016.90
[10]  
HOU HS, 1978, IEEE T ACOUST SPEECH, V26, P508