A STABILIZED P1-NONCONFORMING IMMERSED FINITE ELEMENT METHOD FOR THE INTERFACE ELASTICITY PROBLEMS

被引:34
作者
Kwak, Do Y. [1 ]
Jin, Sangwon [1 ]
Kyeong, Daehyeon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2017年 / 51卷 / 01期
关键词
Immersed finite element method; Crouzeix-Raviart finite element; elasticity problems; heterogeneous materials; stability terms; Laplace-Young condition; DISCONTINUOUS GALERKIN; CRACK-GROWTH; EQUATIONS; LOCKING; APPROXIMATION;
D O I
10.1051/m2an/2016011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new finite element method for solving planar elasticity problems involving heterogeneous materials with a mesh not necessarily aligning with the interface of the materials. This method is based on the 'broken' Crouzeix-Raviart P-1-nonconforming finite element method for elliptic interface problems [D.Y. Kwak, K.T. Wee and K.S. Chang, SIAM J. Numer. Anal. 48 (2010) 2117-2134]. To ensure the coercivity of the bilinear form arising from using the nonconforming finite elements, we add stabilizing terms as in the discontinuous Galerkin (DG) method [D.N. Arnold, SIAM J. Numer. Anal. 19 (1982) 742-760, D.N. Arnold and F. Brezzi, in Discontinuous Galerkin Methods. Theory, Computation and Applications, edited by B. Cockburn, G.E. Karniadakis, and C.-W. Shu. Vol. 11 of Lecture Notes in Comput. Sci. Engrg. Springer-Verlag, NewYork (2000) 89-101, M.F. Wheeler, SIAM J. Numer. Anal. 15 (1978) 152-161.]. The novelty of our method is that we use meshes independent of the interface, so that the interface may cut through the elements. Instead, we modify the basis functions so that they satisfy the Laplace-Young condition along the interface of each element. We prove optimal H-1 and divergence norm error estimates. Numerical experiments are carried out to demonstrate that our method is optimal for various Lame parameters mu and lambda and locking free as lambda -> infinity.
引用
收藏
页码:187 / 207
页数:21
相关论文
共 39 条
[1]   Mixed finite elements for elasticity [J].
Arnold, DN ;
Winther, R .
NUMERISCHE MATHEMATIK, 2002, 92 (03) :401-419
[2]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[3]  
Arnold DN, 2000, LECT NOTES COMP SCI, V11, P89
[4]   ON LOCKING AND ROBUSTNESS IN THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) :1261-1293
[5]   LOCKING EFFECTS IN THE FINITE-ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS [J].
BABUSKA, I ;
SURI, M .
NUMERISCHE MATHEMATIK, 1992, 62 (04) :439-463
[6]   A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) :3352-3360
[7]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[8]  
2-S
[9]   Structured extended finite element methods for solids defined by implicit surfaces [J].
Belytschko, T ;
Parimi, C ;
Moës, N ;
Sukumar, N ;
Usui, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (04) :609-635
[10]  
Braess D., 2001, Finite Elements, in Theory, Fast Solvers, and Applications in Solid Mechanics, VSecond