Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

被引:108
作者
Way, Gregory P. [1 ]
Sanchez-Vega, Francisco [2 ,3 ]
La, Konnor [3 ]
Armenia, Joshua [3 ]
Chatila, Walid K. [3 ]
Luna, Augustin [4 ,5 ]
Sander, Chris [4 ,5 ]
Cherniack, Andrew D. [6 ,7 ]
Mina, Marco [8 ]
Ciriello, Giovanni [8 ]
Schultz, Nikolaus [9 ]
Sanchez, Yolanda [10 ]
Greene, Casey S. [2 ]
机构
[1] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[3] Mem Sloan Kettering Canc Ctr, Marie Josee & Henry R Kravis Ctr Mol Oncol, New York, NY 10065 USA
[4] Dana Farber Canc Inst, cBio Ctr, Dept Biostat & Computat Biol, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA
[6] Eli & Edythe L Broad Inst Massachusetts Inst Tech, Cambridge, MA 02142 USA
[7] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02215 USA
[8] Univ Lausanne, Dept Computat Biol, Lausanne, Switzerland
[9] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[10] Norris Cotton Canc Ctr, Geisel Sch Med Dartmouth, Dept Mol Syst Biol, Hanover, NH 03755 USA
来源
CELL REPORTS | 2018年 / 23卷 / 01期
关键词
PRECISION ONCOLOGY; SELUMETINIB; MUTATIONS; SIGNATURES; PROTEIN; GENE; BRAF; PATHOGENESIS; ONCOGENES; SELECTION;
D O I
10.1016/j.celrep.2018.03.046
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders'' may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
引用
收藏
页码:172 / +
页数:12
相关论文
共 57 条
[1]  
[Anonymous], 2016, SEABORN V0 7 1
[2]  
[Anonymous], 2006, 23 INT C MACH LEARN, DOI [10.1145/1143844.1143874, DOI 10.1145/1143844.1143874]
[3]  
[Anonymous], ANN ONCOL S6
[4]  
[Anonymous], NCBI EXP RASOPATHY P
[5]  
[Anonymous], JCO PRECIS ONCOL
[6]   Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations [J].
Babur, Ozgun ;
Gonen, Mithat ;
Aksoy, Bulent Arman ;
Schultz, Nikolaus ;
Ciriello, Giovanni ;
Sander, Chris ;
Demir, Emek .
GENOME BIOLOGY, 2015, 16
[7]   PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data [J].
Bahceci, Istemi ;
Dogrusoz, Ugur ;
La, Konnor C. ;
Babur, Ozgun ;
Gao, Jianjiong ;
Schultz, Nikolaus .
BIOINFORMATICS, 2017, 33 (14) :2238-2240
[8]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[9]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[10]   Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer [J].
Boasberg, Peter D. ;
Redfern, Charles H. ;
Daniels, Gregory A. ;
Bodkin, David ;
Garrett, Chris R. ;
Ricart, Alejandro D. .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2011, 68 (02) :547-552