Fault Diagnosis Using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Power-Based Intrinsic Mode Function Selection Algorithm

被引:35
作者
Han, Hyungseob [1 ]
Cho, Sangjin [1 ]
Kwon, Sundeok [2 ]
Cho, Sang-Bock [1 ]
机构
[1] Univ Ulsan, Automobile Ship Elect Convergence Ctr, 93 Daehak Ro, Ulsan 44610, South Korea
[2] Youngsan Univ, Coll Engn, 99 Pilbong Gil, Busan 612713, South Korea
关键词
fault diagnosis; improved complete ensemble empirical mode decomposition; intrinsic mode function; neural network; EMD; SPECTRUM; CEPSTRUM;
D O I
10.3390/electronics7020016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the fault diagnosis system using empirical mode decomposition (EMD), it is important to select the intrinsic mode functions (IMFs) which contain as much fault information as possible and to alleviate the problems of mode mixing and spurious modes. An effective solution to these problems in the decomposition process can help to determine significant IMFs and to improve the performance of the fault diagnosis system. This paper describes a novel power-based IMF selection algorithm and evaluates the performance of the proposed fault diagnosis system using improved complete ensemble EMD with adaptive noise and a multi-layer perceptron neural network.
引用
收藏
页数:11
相关论文
共 25 条
[1]   Advances in Diagnostic Techniques for Induction Machines [J].
Bellini, Alberto ;
Filippetti, Fiorenzo ;
Tassoni, Carta ;
Capolino, Gerard-Andre .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (12) :4109-4126
[2]   Early fault diagnosis of rotating machinery based on wavelet packets-Empirical mode decomposition feature extraction and neural network [J].
Bin, G. F. ;
Gao, J. J. ;
Li, X. J. ;
Dhillon, B. S. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 27 :696-711
[3]  
Cheng JS, 2009, SHOCK VIB, V16, P89, DOI [10.3233/SAV-2009-0457, 10.1155/2009/519502]
[4]   Identification of significant intrinsic mode functions for the diagnosis of induction motor fault [J].
Cho, Sangjin ;
Shahriar, Md Rifat ;
Chong, Uipil .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (02) :EL72-EL77
[5]   Improved complete ensemble EMD: A suitable tool for biomedical signal processing [J].
Colominas, Marcelo A. ;
Schlotthauer, Gaston ;
Torres, Maria E. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 14 :19-29
[6]   NOISE-ASSISTED EMD METHODS IN ACTION [J].
Colominas, Marcelo A. ;
Schlotthauer, Gaston ;
Torres, Maria E. ;
Flandrin, Patrick .
ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2012, 4 (04)
[7]   Use of the moving cepstrum integral to detect and localise tooth spalls in gears [J].
El Badaoui, M ;
Antoni, J ;
Guillet, F ;
Danière, J ;
Velex, P .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2001, 15 (05) :873-885
[8]   Neural Network Based Detection of Drowsiness with Eyes Open using AR Modelling [J].
Han, Hyungseob ;
Chong, Uipil .
IETE TECHNICAL REVIEW, 2016, 33 (05) :518-524
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   A fault diagnosis method of rolling element bearings based on CEEMDAN [J].
Lei, Yaguo ;
Liu, Zongyao ;
Ouazri, Julien ;
Lin, Jing .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2017, 231 (10) :1804-1815