ON THE FLY ESTIMATION OF THE SPARSITY DEGREE IN COMPRESSED SENSING USING SPARSE SENSING MATRICES

被引:0
作者
Bioglio, Valerio [1 ]
Bianchi, Tiziano [1 ]
Magli, Enrico [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
来源
2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP) | 2015年
关键词
Compressed Sensing; Sparsity Estimation; Sparse Sensing Matrices; Adaptive Sensing; INFORMATION-THEORETIC LIMITS; SIGNAL RECOVERY; RANDOM PROJECTIONS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose a mathematical model to estimate the sparsity degree k of exactly k-sparse signals acquired through Compressed Sensing (CS). Our method does not need to recover the signal to estimate its sparsity, and is based on the use of sparse sensing matrices. We exploit this model to propose a CS acquisition system where the number of measurements is calculated on-the-fly depending on the estimated signal sparsity. Experimental results on block-based CS acquisition of black and white images show that the proposed adaptive technique outperforms classical CS acquisition methods where the number of measurements is set a priori.
引用
收藏
页码:3801 / 3805
页数:5
相关论文
共 26 条
[1]  
[Anonymous], P IEEE INT C AC SPEE
[2]   On the Fundamental Limits of Adaptive Sensing [J].
Arias-Castro, Ery ;
Candes, Emmanuel J. ;
Davenport, Mark A. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) :472-481
[3]   Streaming Measurements in Compressive Sensing: l1 Filtering [J].
Asif, M. Salman ;
Romberg, Justin .
2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, :1051-1058
[4]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[5]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[6]  
Coluccia G, 2013, IEEE INT WORKSH MULT, P129, DOI 10.1109/MMSP.2013.6659276
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[9]  
Gan L, 2007, PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, P403
[10]  
Garrigues P., 2008, NEURAL INFORM PROCES, V21