Multiple positive solutions for a class of semilinear elliptic boundary value problems

被引:34
作者
Maya, C [1 ]
Shivaji, R [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
sublinear; sub-super solutions; semipositone;
D O I
10.1016/S0362-546X(98)00211-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A semilinear elliptic boundary value problem is solved. The problem is given by the equation -Δu(x) = λf(u(x)), x∈Ω, u(x) = 0, x∈∂Ω, where λ>0 is a parameter and Ω is a bounded region in Rn with smooth boundary ∂Ω. The existence, multiplicity and non-existence of positive classical solutions are studied.
引用
收藏
页码:497 / 504
页数:8
相关论文
共 10 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]   S-SHAPED BIFURCATION CURVES [J].
BROWN, KJ ;
IBRAHIM, MMA ;
SHIVAJI, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (05) :475-486
[3]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :291-302
[4]  
CASTRO A, IN PRESS ROCKY MOUNT
[5]  
Castro A., 1993, Results Math, V23, P214, DOI [10.1007/BF03322297, DOI 10.1007/BF03322297]
[6]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[8]   Instability of nonnegative solutions for a class of semilinear elliptic boundary value problems [J].
Maya, C ;
Shivaji, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (01) :125-128
[9]   PAIRS OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
RABINOWITZ, PH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (02) :173-186
[10]  
Shivaji R., 1987, LECT NOTES PURE APPL, V109, P561